判断一个数字是否为素数:一个数 n 如果是合数,那么它的所有的因子不超过sqrt(n)--n的开方,那么我们可以用这个性质用最直观的方法
来求出小于等于n的所有的素数。注意这里一个合数的约数是互补的,例如10的约数有1,2,5,2和5是互补的,1和10是互补的,因此小于sqrt(10)的那些只有1和2,只要判断小于sqrt(10)就能判断出是否为合数。
num = 0;
for(i=2; i<=n; i++)
{ for(j=2; j<=sqrt(i); j++)
if( j%i==0 ) break;
if( j>sqrt(i) ) prime[num++] = i; //这个prime[]是int型,跟下面讲的不同。
}
这就是最一般的求解n以内素数的算法。复杂度是o(n*sqrt(n))
要设计出一种更好的算法要求能在几秒钟甚至一秒钟之内找出n以内的所有素数。于是就有了素数筛法。
素数筛法是这样的:
1.开一个大的bool型数组prime[],大小就是n+1就可以了.先把所有的下标为奇数的标为true,下标为偶数的标为false(偶数肯定是合数)
2.然后:
for( i=3; i<=sqrt(n); i+=2 ) //仍然只先判断对称的那一半,即 1到sqrt以内的那部分
{ if(prime[i]) //如果是质数,则抠掉该质数的所有倍数,如果是合数,则不作处理 ,因为既然是合数,则必然有因子,该因子如果是质数,则该合数已经被筛过了,如果该因子是合数,则该因子的因子一定有质数
for( j=i+i; j<=n; j+=i ) prime[j]=false; //把大于i的i的那些倍数从2i=i+i开始,3i,4i,一直到n以内的i的倍数都置为假,即这些也必然是合数
}
3.最后输出bool数组中的值为true的单元的下标,就是所求的n以内的素数了。
原理很简单,就是当i是质(素)数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质
数的倍数筛掉。
一个简单的筛素数的过程:n=30。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
第 1 步过后2 4 ... 28 30这15个单元被标成false,其余为true。
第 2 步开始:
i=3; 由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]标为false.
i=4; 由于prime[4]=false,不在继续筛法步骤。
i=5; 由于prime[5]=true, 把prime[10],[15],[20],[25],[30]标为false.
i=6>sqrt(30)算法结束。
第 3 步把prime[]值为true的下标输出来:
for(i=2; i<=30; i++)
if(prime[i]) printf("%d ",i);
结果是 2 3 5 7 11 13 17 19 23 29