【LLM】使用ColossalAI-0.4.0对llama3-8B-Instruct进行全参数微调 目的:掌握训练手段,使用2000+QA数据集,对llama3-8B做SFT,使模型能完全按数据集中的问题进行回答,保证准确性。本文记录了全部过程和训练过程中遇到的所有问题。
【LLM】基于ColossalAI-0.3.6对llama2-7B-Chat做全参数微调 本文介绍了使用ColossalAI对Llama2-7B-Chat做SFT的全部过程,包括原始数据集的格式、数据集预处理、训练等等。
【Kafka】Kafka生产者开启幂等性后报错:Cluster authorization failed. 1. 用户业务需求,需要开启生产者的幂等性,生产者加了配置:enable.idempotence = true2. 用户使用的集群开启了ACL认证:SASL_PLAINTEXT/SCRAM-SHA-5123. 用户生产消息时报错:org.apache.kafka.common.errors.ClusterAuthorizationException: Cluster authorization failed.
【RocketMQ】Console页面报错:rocketmq remote exception,connect to xxx failed. console报错,无法连接该节点,经排查,该节点为slave,把该节点杀掉,还是继续报错,重启之后,报错的端口变成11911。
【Kafka】Kafka客户端认证失败:Cluster authorization failed. 1. kafka客户端是公司内部基于spring-kafka封装的2. spring-boot版本:3.x3. spring-kafka版本:2.1.11.RELEASE4. 集群认证方式:SASL_PLAINTEXT/SCRAM-SHA-5125. 经过多年的经验,以及实际验证,配置是没问题的,但是业务方反馈用相同的问题,还是报错!
【AIGC】如何在使用stable-diffusion-webui生成图片时看到完整请求参数 通过代码调用Stable Diffusion的txt2img、img2img接口时,很多时候都不知道应该怎么传参,比如如何指定模型、如何开启并使用Controlnet、如何开启面部修复等等,在sd-webui上F12看到的请求也不是正式调用SD的请求,所以当引入新插件或需要使用新功能时,怎么传参成了一个大问题,网上关于接口传参的资料也很少,接下来就介绍一下,如何在每次通过sd-webui点击生成图片时,获取到完整的请求参数。
【Redis】记录一次K8S存储故障导致Redis集群拓扑异常的修复过程 集群部署在K8S环境内,存储使用的localpv,有一台K8S主机节点磁盘故障,导致在该节点上的redis节点均出现故障,主要表现为持久化失败、集群拓扑异常,持久化失败可以临时关闭RDB和AOF持久化、等挂载好新的硬盘后,重新创建pvc进行恢复,经过观察,这些redis节点恢复后,operator并不能完成集群自愈,需要手动干预,主要表现为:集群拓扑异常:故障的节点没有被清理掉、新的节点没有以正常的角色加入到集群中。
【Java】使用Apache POI识别PPT中的图片和文字,以及对应的大小、坐标、颜色、字体等 本文介绍如何使用Apache POI识别PPT中的图片和文字,获取图片的数据、大小、尺寸、坐标,以及获取文字的字体、大小、颜色、坐标
【Java】对Minio指定Bucket大量文件的批量下载与本地文件夹的批量上传 需要批量下载一个bucket下的内容,bucket下文件有19GB+,且文件夹结构复杂,使用官方的Console无法完成这么大量文件的下载,而且也不支持文件夹的分享,所以自己写个工具下载,顺便把上传的也写了。
【ChatGLM】使用ChatGLM-6B-INT4模型进行P-Tunning训练记录及参数讲解 pre_seq_len的取值范围一般是1到512,它表示自然语言指令的长度,即输入序列中的前pre_seq_len个token,具体的值需要根据自然语言指令的长度和复杂度来确定。一种可能的方法是,根据不同的指令类型设置不同的pre_seq_len值,例如,对于简单的指令,如“生成一个笑话”,可以设置pre_seq_len为4;不完全是的,pre_seq_len和max_source_length的含义是不同的,但是它们之间有一定的关系。因此,需要根据具体的任务和数据集来调整这个参数,以达到最佳的效果。
【ChatGLM】记录一次Windows部署ChatGLM-6B流程及遇到的问题 系统版本:Windows 10 企业版版本号:20H2系统类型:64 位操作系统, 基于 x64 的处理器处理器:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 3.19 GHz机带 RAM:16.0 GB显卡:NVIDIA RTX 2070(8G)Python版本:3.10.11