Objects365 - 最新大规模高质量目标检测数据集

投稿作者:极链AI研究院顾寅铮

 

今年4月,在北京举行的智源学者计划启动暨联合实验室发布会上,北京旷视科技有限公司与北京智源人工智能研究院共同发布了全球最大的目标检测数据集 – Objects365。

该数据集总共包含63万张图像,覆盖365个类别,高达1000万框数,具有规模大、质量高、泛化能力强的特点,远超Pascal VOC、COCO等传统数据集。关于Objects365的论文 [1] 近日在两年一度的计算机视觉顶会ICCV 2019中发表,同时在不久前结束的谷歌目标检测赛Open Images Challenge 2019 – Object Detection Track [2] 中排名前三的队伍都使用了Objects365作为额外数据集并取得mMAP平均提升2至3个百分点。

1. 规模

数据集包括人、衣物、居室、浴室、厨房、办公、电器、交通、食物、水果、蔬菜、动物、运动、乐器14个大类,平均每一类有大约26个小类。

Objects365与其他数据集的比较

如图1所示,比起COCO数据集 [3],Objects365具有5倍的图像数量、4倍的类别数量、以及10倍以上标注框数量。在数量上,唯一规模超过Objects365的OpenImages数据集 [4] 具有标注精度不高及覆盖不全等明显缺点 (partially annotated),这对模型训练会带来严重影响。比起OpenImages,Objects365具有每张图中所有物体都被标注的优势,这在Boxes/img这列 (15.8 vs. 9.8) 得到体现:在类别数少 (3

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Objects365数据集是由旷视和北京智源人工智能研究院联合推出的目标检测任务的新基准。该数据集的图像数据都是在自然场景中设计和收集的。它主要用于解决具有365个对象类别的大规模检测,并为目标检测研究提供多样化、实用性的基准。你可以在官方网站http://www.objects365.org/overview.html上了解更多关于Objects365数据集的信息。\[1\]\[2\] 如果你需要使用Objects365数据集,你可以根据自己的需求筛选所需的类别,并将指定类型的数据标注转换成XML格式,并生成对应的图片及标注列表。在object365_dict.txt文件中可以找到365种类别的详细信息。你也可以在Object365数据集的博客中找到365种类别的具体内容。\[3\] #### 引用[.reference_title] - *1* *3* [Objects365数据简介及数据转换为XML格式](https://blog.csdn.net/lidc1004/article/details/117475831)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Object s 365目标检测 数据集](https://blog.csdn.net/weixin_41194129/article/details/119905173)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值