LangChain 使用向量数据库介绍与使用

LangChain 是一个用于构建大语言模型(LLM)应用的框架,而向量数据库在 LangChain 中主要用于实现检索增强生成(RAG, Retrieval-Augmented Generation),即通过向量搜索从外部知识库中快速检索相关信息,辅助大模型生成更准确的回答。以下是具体的使用方法:


1. 核心流程

LangChain 使用向量数据库的典型流程分为四步:

  1. 加载文档 → 2. 文本分块 → 3. 向量化存储 → 4. 检索与生成
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS  # 以FAISS为例

# 1. 加载文档
loader = TextLoader("data.txt")
documents = loader.load()

# 2. 文本分块(避免超出模型上下文长度)
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)

# 3. 向量化并存储到数据库
embeddings = OpenAIEmbeddings()  # 使用OpenAI的嵌入模型
vector_db = FAISS.from_documents
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rockmelodies

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值