【Flink】设置多少并行度为好

本文介绍了Flink并行度的概念,包括如何在系统、客户端、执行环境和算子层次设置,并提供了并行度设置的最佳实践,如与Kafka分区数对应、2的整数次幂等,以优化大数据处理效率。
摘要由CSDN通过智能技术生成

目录

什么是Flink并行度?

Flink并行度如何设置?

 Flink并行度设置多大为好?


大数据组件设计的时候都会运用分而治之的设计理念,把海量数据分散到多台服务器,每台服务器分别处理数据,多台服务器进行数据的聚合计算等,而分而治之理念在Flink里面的一个落地就是并行度。

什么是Flink并行度?

一个 Flink 程序由多个任务 task 组成(算子、source和sink)。一个 task 包括多个并行执行的实例,且每一个实例都处理 task 输入数据的一个子集。一个 task 的并行实例数被称为该 task 的 并行度 (parallelism),可以说在一定程度上,增大并行度可以增加大数据程序执行速率。

Flink并行度如何设置?

1、系统层次

可以通过设置 ./conf/flink-conf.yaml 文件中的 parallelism.default 参数,在系统层次来指定所有执行环境的默认并行度,适用场景,规范提交并行度,防止提交代码不设置并行度而导致一些问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一杯咖啡半杯糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值