我们学习大数据知识的时候,需要知道大数据组件如何安装以及架构组件,这将帮助我们更好的了解大数据组件
对于大数据Flink,架构图图下:

整个架构图有三种关键组件
1、Client:负责作业的提交。调用程序的 main 方法,将代码转换成“数据流图“(DataflowGraph),并最终生成作业图(JobGraph),一并发送给 JobManager。同时客户端也可以随时连接到 JobManager,获取当前作业的状态和执行结果,也可以发送请求取消作业
2、JobManager :是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。也就
是说,每个应用都应该被唯一的 JobManager 所控制执行
3、TaskManager:是 Flink 中的工作进程,数据流的具体计算就是它来做的,所以也被称为
“Worker”。Flink 集群中必须至少有一个 TaskManager;当然由于分布式计算的考虑,通常会
有多个 TaskManager 运行,每一个 TaskManager 都包含了一定数量的任务槽(task slots)。Slot
是资源调度的最小单位,slot 的数量限制了 TaskManager 能够并行处理的任务数量。
这篇博客深入介绍了大数据组件Flink的架构,重点解析了Client、JobManager和TaskManager三大关键组件的角色和功能。Client负责作业提交,JobManager是任务管理和调度的核心,而TaskManager则执行具体的计算任务。通过理解这些组件,有助于更好地掌握Flink在大数据处理中的工作原理。
470

被折叠的 条评论
为什么被折叠?



