maven的pom报plugins错误的解决方法. 转载来源:http://blog.sina.com.cn/s/blog_90aad2c90101lce4.htmlmaven的pom报plugins错误的解决方法.引用Failure to transfer org.apache.maven.plugins:maven-surefire-plugin:pom:2.7.1 from http://repo1.maven.org/maven...
maven环境下使用java、scala混合开发spark应用 在IDEA 14.1中新建maven工程spark-graphx-test然后找到:File->Project Structure->Project Settings->Modules->Sources->src->main 右键点击New Folder,新建scala目录,然后选中scala,点击Sources。此步骤完成新建一个scala目录,并把此目录...
拉格朗日对偶 SVM(一)SVM(support vector machine,支持向量机)是最好的分类模型之一。通过寻找高维空间上的超平面,把样本分隔为两类,并且计算复杂度并没有因为高维映射而增加。 间隔在logistic回归中,通过logistic函数,我们得到介于[0,1]之间的预测值h(x)。h(x)>0.5,判定为正类,反之判定为负类。在建立概率模型时,我们把h(x)大
支持向量机 (一)SVM的背景简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Ac
【斯坦福---机器学习】复习笔记之生成学习算法 本讲大纲:1.生成学习算法(Generative learning algorithm) 2.高斯判别分析(GDA,Gaussian Discriminant Analysis) 3.朴素贝叶斯(Naive Bayes) 4.拉普拉斯平滑(Laplace smoothing)1.生成学习算法判别学习算法(discriminative learning algor
generalized Linear Models 经典线性模型自变量的线性预测就是因变量的估计值。 广义线性模型:自变量的线性预测的函数是因变量的估计值。常见的广义线性模型有:probit模型、poisson模型、对数线性模型等等。对数线性模型里有:logistic regression、Maxinum entropy。本篇是对逻辑回归的学习总结,以及广义线性模型导出逻辑回归的过程。下一篇将是对最大熵模型的学习总结。本篇介绍的大纲如下:1、逻
监督学习与无监督学习 这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。但根据知乎惯例,答案还是要继续扩展的。首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算
局部加权线性回归 紧接着之前的问题,我们的目标函数定义为:我们的目标是最小化cost function:换成线性代数的表述方式:是mxm维的对角矩阵是mxn维的输入矩阵是mx1维的结果是nx1维的参数向量令有既权重定义为:参数τ控
Eclipse中将Java项目转换成Web项目的方法 前言: 用Eclipse开发项目的时候,把一个Web项目导入到Eclipse里会变成了一个java工程,将无法在Tomcat中进行部署运行。 方法: 1.找到.project文件,找到里面的标签,查看是否有下面的代码,没有则复制进去。 Xml代码org.eclipse.wst.common.project.facet.core.natureorg.eclipse.w
三种方法求解最大公约数 %greatest common divisor 最大公约数clc;clear;%1.辗转相除法(欧几里得算法):两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。a=250;b=100;c=1;while(c~=0) c=mod(a,b); if(c==0) b else a=b; b
使用NEH解决no-wait flowshop makespan问题 (源码) 1.NEH的原理(1)将每个工件在所有机器上的加工时间求和;对求和后的值进行从大到小排序;(2)首先选择第一个工件(加工时间最长的),用第二个工件插入到第一个工件的前后两个位置,计算makespan,小的被保存;(3)将上一步保存的序列固定位置,使用下一个工件插入到之前的工件中,并比较得出最小的makespan并保存;(4)重复上一步,得出最终结果。2.源码clc;
matlab画甘特图 最近为发小论文一直在研究作业调度问题,好不容易把数据搞出来了,结果又被画甘特图给难住了,查了各种资料,anygantt,highchart,Jfree chart等都试了,效果都不咋好。无意中留意到网上有用matlab画甘特图的,自己修改了一下,感觉画出的图还可以。感觉还是matlab好用啊,代码简单,函数库强大,废话少说直接上代码。%fileName:mt06_final.mt06%fil
R语言学习笔记(1):R是什么 1. R初窥从CRAN(The Comprehensive R Archive Network)cran.r-project.org—mirrors.html中选择一个镜像,然后下载合适的安装包(R支持Linux、Mac OS X和Windows)。安装并运行R后,可以看到R的控制台(我的操作系统是Mac OS):在R的控制台输入如下命令: > install.
Matlab_001:clc与clear 在MATLAB中,clc和clear命令是大家经常用到的命令,熟练使用这两个命令可为编程提供很大的方便。 clc命令是用来清除命令窗口的内容,这点不用多说。不管开启多少个应用程序,命令窗口只有一个,所以clc无论是在脚本m文件或者函数m文件调用时,clc命令都会清除命令窗口的内容。 clear命令可以用来清除工作空间的内容。MATLAB有个基本的工作空间,用base标识
启发式与元启发式算法 启发式算法(Heuristic Algorigthm)是一种基于直观或经验构造的算法,在可接受的花费(指计算时间、计算空间等)给出待解决优化问题的每一实例的一个可行解,该可行解与与最优解的偏离程度一般不可以事先预计。 启发式算法是一种技术,这种算法可以在可接受的计算费用内找到最好的解,但不一定能保证所得到解的可行性及最优性,甚至大多数情况下无法阐述所得解与最优解之间的近似程度。
神经网络编程入门 本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里
JSP中forward和redirect有什么区别? 什么时候必须用哪个? 解释一:RequestDispatcher.forward()方法和HttpServletResponse.sendRedirect()方法的区别是:前者仅是容器中控制权的转向,在客户端浏览器地址栏中不会显示出转向后的地址,他是不会改变Request的值,如果你需要在下一个页面中能从中获取新的信息的话,你可以Request.setAttribute()来放置一些标志,这样从下一个页面中获取
什么是P问题、NP问题和NPC问题 这或许是众多OIer最大的误区之一。 你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题并不是那种“只有搜才行”的问题,NPC问题才是。好,行了,基本上这个误解已经被澄清了。下面的内容都是在讲什么是P问题,什么是NP问题,什么