changtingwai58
码龄10年
关注
提问 私信
  • 博客:222,236
    222,236
    总访问量
  • 192
    原创
  • 1,960,486
    排名
  • 26
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2015-04-22
博客简介:

shiqi,bao的博客

博客描述:
关注算法,软件
查看详细资料
个人成就
  • 获得38次点赞
  • 内容获得23次评论
  • 获得116次收藏
创作历程
  • 1篇
    2018年
  • 28篇
    2017年
  • 186篇
    2016年
成就勋章
TA的专栏
  • java
    3篇
  • python
    5篇
  • ML
    31篇
  • c++
    8篇
  • linux
    4篇
  • 算法学习
    65篇
  • 面试
    1篇
  • 数学基础
    1篇
  • 杂项
    1篇
  • caffe
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

conda bad interpreter 问题解决

由于CentOS自带python,使用yum只会把mysqldb安装在系统默认的python环境中,修改yum中的python路径yum又会报错,下载源码编辑又会各种报错,后来终于找到一个简单安装方法,记载如下:使用anaconda自带conda命令安装: /opt/anaconda/bin/conda install mysql-python注:本人用以上命令安装时曾遇到以下报错, ...
转载
发布博客 2018.02.28 ·
4989 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

core ml 文档说明

Apple原文链接Core ML集成机器学习模型到你的app里面概述结合Core ML, 你可以集成训练机器学习模型到你的app里面. 训练模型是将机器学习算法应用于一组训练数据的结果. 该模型基于新的输入数据进行预测. 例如, 根据某个地区的历史房价进行训练的模型, 可能能够在给予卧室和浴室的数量时预测房子的价格.Core ML是特定领域的基础框架和功能库. Core ML支持视觉图像分析, 基
翻译
发布博客 2017.12.04 ·
565 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python yield 使用浅析

转载:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。 如何生成斐波那契數列 斐波那契(Fibona
转载
发布博客 2017.11.12 ·
369 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

c++转换static_cast 和 reinterpret_cast

转自http://blog.csdn.net/querw/article/details/7387594>作者: 阙荣文(querw@sina.com)C/C++是强类型语言,不同类型之间的相互转换是比较麻烦的.但是在编程实践中,不可避免的要用到类型转换.有2中类型转换:隐式类型转换和强制类型转换.1.隐式类型转换1.1 提升精度,此种是编译器自动完成的,安全的.所以编译的时
转载
发布博客 2017.08.24 ·
848 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

vim 自动补全功能

必备插件ctagsOmniCppCompletectags安装: jumbo 直接安装在project根目录产生tags ctags -R –c++-kinds=+p –fields=+iaS –extra=+q .tags用于函数和变量的定位查找OmniCppComplete安装 将下载到的文件解压到 Vim 安装目录: /home/username/.vimautolo
原创
发布博客 2017.08.23 ·
877 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

c++ 加锁和原子对比

记录访问10w次时,100个用户需要的耗时 1. 多线程不加锁访问#include <boost/thread/thread.hpp>#include <iostream>#include <time.h>using namespace std;//全局统计结果long total = 0;//点击10w次int count_num = 100000;//点击函数,对全局数据进行无锁
原创
发布博客 2017.08.15 ·
3029 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

mac下安装boost

1、安装MacPort https://www.macports.org/2、安装好后,打开终端 $sudo port install boost3、编译使用boost的cpp g++ -I /opt/local/include -L /opt/local/lib -lboost_system-mt -lboost_thread-mt
原创
发布博客 2017.08.15 ·
411 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

延迟补偿的异步随机梯度下降(ASGD with DC)

摘要随着深度学习快速发展,目前普遍使用大数据训练庞大神经网络。因为效率高,ASGD广泛使用,但是有梯度延迟的缺陷。这是因为当一个本地worker将梯度push到全局模型中时,可能这个全局模型已经被其他worker将梯度更新过了,这样本地worker push的梯度就是延迟的。因此本文提出补偿延迟的一个新技术,为了使ASGD更接近于SGD的优化效果。这是利用梯度函数的泰勒展开来有效逼近损耗函数的Hes
原创
发布博客 2017.07.18 ·
10184 阅读 ·
1 点赞 ·
7 评论 ·
11 收藏

卷积神经网络教程

在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。局部感知卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全
原创
发布博客 2017.07.15 ·
593 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DNN基础教程

一、原理前向传播: http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C 反向传播: http://blog.csdn.net/han_xiaoyang/article/details/50321873二、Python实现使用mn
原创
发布博客 2017.07.15 ·
2953 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

pycaffe预测非图片数据分类

1、 准备工作一. deploy.prototxt文件修改于train.prototxt,主要为3部分:(1) data层 修改为input层layer { name: "data" type: "Input" top: "data" input_param { shape: { dim: 1 dim: 7 dim: 1 dim: 1 } }(2)删掉layer 中关于weight和
原创
发布博客 2017.06.28 ·
799 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

caffe 迁移

在一个配置好pycaffe的服务器上,将caffe迁移到线上服务器的步骤保存动态共享库for i in `ldd ./build/tools/caffe.bin | grep -v "linux-vdso.so.1" | grep -v "openmpi" | awk -F '=>' '{print $2}' | awk -F ' ' '{print $1}'`; do echo $i; cp $i
原创
发布博客 2017.06.21 ·
743 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

caffe-python接口图片分类demo

文章转载自: http://wentaoma.com/2016/08/10/caffe-python-common-api-reference/图片分类加载Model数据net = caffe.Net( deploy_prototxt_path, # 用于分类的网络定义文件路径 caffe_model_path, # 训练好模型路径
转载
发布博客 2017.06.19 ·
562 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Caffe-Python接口常用API参考

caffe python api
转载
发布博客 2017.06.16 ·
499 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pycaffe 安装常见问题

lib中python是ucs2编译的,所以需要本地系统python也是ucs2才兼容,可以通过import sys if sys.maxunicode > 65535: print ‘UCS4 build’ else: print ‘UCS2 build’ 安装pthon的时候指定./configure –enable-unicode=ucs2pyconfig.h 找不到 find /
原创
发布博客 2017.06.16 ·
3420 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

caffe 通过model zoo 使用训练好的模型 finetune

caffe model zoo许多研究人员和工程师已经将Caffe模型用于各种架构和数据的不同任务: 这些模型被学习并应用于从简单回归到大规模视觉分类,到图像相似性的暹罗网络,语音和机器人应用的问题。 * 用于包装Caffe模型信息的标准格式。 * 从Github Gists上传/下载模型信息的工具,并下载受过训练的.caffemodel二进制文件。 * 用于分享模型信息的中心wiki页面Gi
原创
发布博客 2017.05.25 ·
6095 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

svd 理解

看了不少论文,总结起来用SVD做推荐主要有两种不同的方式。1 本质上是memory-based,只不过先用SVD对user-item的评分矩阵做降维,得到降维后的user特征和item特征,可以分别做userbased的协同过滤和itembased的协同过滤。2  本质上是model-based,跟传统数学意义的SVD没有太大关系,只不过借鉴了SVD分解R=U*S*V这个形式,通过最优化方
转载
发布博客 2017.05.05 ·
1049 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

GDB调试加载执行程序后,提示 “not in executable format”

gdb调试注意用file查看下文件是不是可执行文件,而不是脚本GDB调试加载执行程序后,提示 “not in executable format”gdb const出现下面的提示信息:GNU gdb Red Hat Linux (5.5)Copyright 2008 Free Software Foundation, Inc.GDB is free software, covered by the
转载
发布博客 2017.05.03 ·
23508 阅读 ·
3 点赞 ·
1 评论 ·
8 收藏

tf 原理二

计算图反复执行多次,tensor不会持续保留,只是在计算图中过一遍。 variable是一类特殊的运算操作,可以将需要保留的tensor存储在内存或显存中,如weight实现原理tf的client通过session的接口与master和多个worker相连。其中每一个worker可以与多个硬件设备(device)相连,比如cpu和gpu,并负责管理这些硬件。而master则负责指导所有worker
原创
发布博客 2017.05.02 ·
651 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

因式分解结合最近邻:多层面的协同过滤模型

摘要推荐系统为用户提供个性化的产品和服务。这些系统大部分都使用协同过滤,通过分析过去行为以建立用户和产品之间的联系。CF的2个比较成功的方法,其一是隐语义模型LFM,它直接描述用户和产品;另一是近邻模型,它分析用户或产品之间的相似度。在本文中,为这两种方法引入一些创新。因子模型和近邻模型可以顺利的融合,因此可以得到一个更准确的组合模型。通过扩展模型以利用用户的显式和隐式反馈来实现进一步的精度改进。本
翻译
发布博客 2017.04.26 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多