现在就开始干活了。先要测试一下pyalgotrade回测数据对不对。我找了个参照标准:在聚宽上开通了个账号,按入门教程写了个策略:2016-2018年每个交易日买入100股平安银行(000001),回测结果如下:

现在用pyalgotrade来实现一下这个策略。先用tushare下载平安银行及沪深300指数的2016年数据。
首先从csv文件建立数据源。
from pyalgotrade_tushare import tools, barfeed
instruments = ["000001"]
feeds = tools.build_feed(instruments, 2016, 2018, "histdata")
如果没有下载过数据,会自动下载以后存到histdata目录里,如果下载过,就自动使用目录里的数据了。feeds是BarFeed类型,就是其中的数据驱动pyalgotrade回测框架运行。
接着就从Pyalgotrade.strategy.BacktestingStrategy继承自己的策略类。
class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument, brk):
super().__init__(feed, brk)
self.__position = None
self.__instrument = instrument
self.getBroker()
self.__cost = 0.0
def on

本文通过对比Pyalgotrade与聚宽平台的回测结果,探讨了数据源、交易成本和计算差异对回测的影响。作者在Pyalgotrade中实现了买入平安银行的简单策略,发现回测数据略有出入,分析可能原因包括数据复权方法、滑点设置及交易执行时机。总结了使用Pyalgotrade进行量化回测的六个步骤,并计划进一步研究量化交易策略。
最低0.47元/天 解锁文章
1282

被折叠的 条评论
为什么被折叠?



