Pyalgotrade量化交易回测框架

本文通过对比Pyalgotrade与聚宽平台的回测结果,探讨了数据源、交易成本和计算差异对回测的影响。作者在Pyalgotrade中实现了买入平安银行的简单策略,发现回测数据略有出入,分析可能原因包括数据复权方法、滑点设置及交易执行时机。总结了使用Pyalgotrade进行量化回测的六个步骤,并计划进一步研究量化交易策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在就开始干活了。先要测试一下pyalgotrade回测数据对不对。我找了个参照标准:在聚宽上开通了个账号,按入门教程写了个策略:2016-2018年每个交易日买入100股平安银行(000001),回测结果如下:

现在用pyalgotrade来实现一下这个策略。先用tushare下载平安银行及沪深300指数的2016年数据。

首先从csv文件建立数据源。

from pyalgotrade_tushare import tools, barfeed


instruments = ["000001"]
feeds = tools.build_feed(instruments, 2016, 2018, "histdata")

如果没有下载过数据,会自动下载以后存到histdata目录里,如果下载过,就自动使用目录里的数据了。feeds是BarFeed类型,就是其中的数据驱动pyalgotrade回测框架运行。

接着就从Pyalgotrade.strategy.BacktestingStrategy继承自己的策略类。

class MyStrategy(strategy.BacktestingStrategy):
    def __init__(self, feed, instrument, brk):
        super().__init__(feed, brk)
        self.__position = None
        self.__instrument = instrument
        self.getBroker()
        self.__cost = 0.0


    def on
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青年夏日科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值