个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
vLLM 推理底层结构深解:PagedAttention、Token流式与并发调度解析
✨ 摘要:
vLLM 是当前大模型推理部署领域最受欢迎的框架之一,
它在不改变模型结构的前提下,显著提升了推理吞吐与并发能力,
支持token 流式输出(Streaming)、长上下文支持、OpenAI API 接口无缝适配等一系列强特性。
本篇将以系统级视角,深入解析 vLLM 的关键优化模块——PagedAttention 的设计原理、KV 缓存机制、Token Scheduling 算法与高并发调度策略,
并结合实际部署经验,告诉你:“为什么 vLLM 能让同样的模型推理 TPS 翻倍?”
本文适合希望将 Huggingface 权重部署为生产级服务、追求低延迟与高吞吐的开发者与系统工程师。
🧭 目录:
- 为什么传统推理框架在多轮对话中效率低下?
- vLLM 的核心架构介绍:模块拆解与执行流程
- 深度拆解 PagedAttention:内存分页、KV 缓存映射与懒回收机制
- Token 输出为啥快?Streaming Decode 的 token-level 优化逻辑
- 并发调度器如何提升吞吐?Token Round-Robin 与 batching 机制分析
- vLLM 在生产部署中的最佳实践(模型加载、worker 启动、接口路由)
- 本篇总结:vLLM 的优势、限制与应用推荐路径
1. 为什么传统推理框架在多轮对话中效率低下?
你可能已经部署过大模型,发现一个现象:
单轮问答 TPS 勉强过得去,到了多轮对话就「断崖式下滑」,响应延迟暴涨,显存突然飙高。
这是传统推理引擎的一个普遍痛点,尤其是在 Chat 类应用中 ——
token 流式响应、KV 缓存管理、上下文复用等细节处理不到位,
会让你训得再好的模型,跑起来依然像「拖着沙包」。
🎯 原因一:KV 缓存重复计算
以 Huggingface Transformers 为例,它的推理行为是这样的:
用户输入:Hello → 模型输出第一 token → 缓存 KV → 输入新 token → 全部重复计算
每轮都要重新走一遍长上下文计算 → 浪费极大。
🎯 原因二:Multi-turn Chat = 长上下文爆炸
| 轮数 | 累计上下文长度 |
|---|---|
| 单轮 | 256 tokens |
| 4 轮 | 1200+ tokens |
| 8 轮 | 2000+ tokens |
→ 若未做 KV 管理优化,显存 / 延迟会呈指数增长。
🎯 原因三:缺乏批处理并发调度
传统推理:一个请求 → 一个模型 → 一次前向
→ 无法拼 batch,token-level granularity 太粗
→ GPU 资源利用率非常低(只有一个 token 正在跑)
✅ vLLM 设计目标总结:
vLLM 的全部核心优化围绕这三点:
| 问题 | vLLM 解决方式 |
|---|---|
| 重复计算 → 慢 | ✅ KV Cache 分页 + PagedAttention |
| 上下文拉长 → 显存爆 | ✅ 动态分配 + 映射 + 延迟回收 |
| 并发低 → TPS 低 | ✅ Token Scheduling + 请求合并调度 |
2. vLLM 的核心架构介绍:模块拆解与执行流程
vLLM = Visionary Language Model Server(开玩笑 😄)
vLLM 实际是 Huggingface 模型 + 高性能 KV 管理 + Streaming Scheduler 的融合体。
🧱 核心架构图概览:
┌────────────────────────────┐
│ Web API 接口层 │ ← OpenAI 风格 API(兼容)
├─────────────┬──────────────┤
│ Token Scheduler │ Request Router │ ← 动态合并 & token-level 执行
├─────────────┴──────────────┤
│ PagedAttention Engine │ ← 核心:KV 分页映射 & 懒惰清理
├────────────────────────────┤
│ Huggingface Transformer │ ← 支持所有 HF 权重 + LoRA
└────────────────────────────┘
🔍 模块解析:
✅ 1. Web API 接口层
- 完全兼容 OpenAI API 格式
- 支持流式输出(
stream=True) - 支持异步请求并发(asyncio + fastapi)
✅ 2. Token Scheduler
- 以 token 为最小调度单元(而非 batch)
- 动态收集多个用户请求 → 拼接 → 一起执行 → 再分发返回结果
- 支持:
- Round-Robin Scheduling(默认)
- FIFO / Priority Scheduling(可定制)
✅ 3. PagedAttention Engine
- 真正的性能黑科技(我们下节详细讲)
- 将传统 KV Cache 改为 内存分页映射结构,允许:
- 单轮多 token 精准查找
- KV 缓存动态分配 / 回收
- 极大降低上下文冗余
✅ 4. Huggingface Model Core
- 无需修改模型结构
- 支持原生 Transformers 权重 + peft LoRA 插件
- 可自动切换至 fp16/bf16 运行模式
3. 深度拆解 PagedAttention:内存分页、KV 缓存映射与懒回收机制
✳️ 背景回顾:传统 KV Cache 如何拖垮推理效率?
在标准 Huggingface 推理中,Transformer 的注意力机制会为每个输入保存:
- K(Key)向量缓存
- V(Value)向量缓存
默认做法是:
KV Cache = List[BatchSize][SeqLen][Head][Dim]
每当你追加新的 token,模型就会重新构建完整 attention mask、重新加载全量 KV。
长上下文、多个请求一起跑,就会导致:
- ❌ 显存激增
- ❌ KV 内存碎片严重
- ❌ token 推理串行化,吞吐急剧下降
✅ vLLM 的创新点:引入分页式注意力机制(PagedAttention)
你可以类比操作系统的内存管理方式:
不再把 KV Cache 视为连续长数组,而是划分为「内存页」(pages),并通过页表进行管理和映射。
🔍 架构核心:KV Cache × Paged Memory × Page Table
✅ KV 被切分成“页”:
KV_Pool = List[Pages] # 每页大小固定,如 512 tokens
✅ 每个请求维护自己的「虚拟页表」:
Request KV Map = {
request_1: [page_2, page_5, page_8],
request_2: [page_3, page_7]
}
不同请求共享物理页,但拥有独立逻辑地址映射。
🧠 优势 1:动态分配 + 精准复用
- 每次生成新 token,只需要增量追加当前 token 的 KV → O(1) 写入
- 多轮历史 KV 只需保留引用 → O(1) 复用
- 无需拷贝整个上下文 → 显存显著下降
🧠 优势 2:懒回收 + 压缩机制
- 如果请求中止、KV 超过最大页数 → 仅回收未活跃页
- 冷热页判定机制 + 精细回收算法,可实现「边跑边释放」
🧠 优势 3:长上下文性能稳定
以 LLaMA2-7B 为例:
| 上下文长度 | Huggingface TPS | vLLM TPS(PagedAttention) | 提升比 |
|---|---|---|---|
| 512 tokens | 500 tok/s | 510 tok/s | ≈ 1.0× |
| 2048 tokens | 180 tok/s | 500 tok/s | ≈ 2.8× |
| 4096 tokens | ❌ OOM | 480 tok/s | ✅ 可用! |
📦 内部执行流程图(简化):
请求 A:
"Hi, how are you?" → 分页 → page_1, page_2
请求 B:
"Tell me a joke..." → 分页 → page_3, page_4
新 token 到来:
→ 仅追加新页(page_5)
→ 原上下文只查页表,无需重构整个 KV
生成时:
→ 每个 token 从对应 page 中 fetch KV → 注意力计算 → 输出
✅ 为什么这就是 vLLM TPS 起飞的秘密?
PagedAttention 让大模型推理从原本的:
一次请求 = 整个上下文重新算一遍
变成了:
一次请求 = 仅处理新增 token + 已缓存页重用
这就是**“Token 级增量推理”**,
这也是为什么你把同一个模型扔进 vLLM,TPS 立刻翻倍,长上下文还能不卡。
4. Token 输出为啥快?Streaming Decode 的 token-level 优化逻辑
🧩 背景问题:为什么很多框架支持 stream=True,但响应还是慢?
这是很多人搞混的一个点:
“stream=True ≠ 每个 token 都能即时返回。”
在 Huggingface Transformers 默认行为下:
- token 是 batch 级别执行的
- 等待整个 forward pass 后,才能开始发送 response
- 在高并发场景中,你仍然会等整批 token 全部生成
结果就是:响应延迟并未真正下降,用户仍需等待首个 token 被 return。
✅ vLLM 的 Streaming 设计思路:Token-first,异步调度
vLLM 的关键优化逻辑是:
把每个 token 的生成、缓存、发送 变成三条独立可并发的流水线
🎯 执行流程解析:
1. 用户请求发起(stream=True)
2. Token Scheduler 收到请求 → 拆成 token 级别执行任务
3. 第一个 token 被计算出来后(比如 "Hello")→ 立即推入输出队列
4. 后续 token 一边计算、一边通过 Streaming Server 持续送出
最终形成:
[Request Queue] → [Token Decode Engine] → [Output Stream Dispatcher]
🧠 核心机制解析
✅ 1. Token-Level Granularity Decode
vLLM 使用 token 作为最小调度单位,而不是句子 / batch,带来两个结果:
- 多用户可同时调度单 token 请求(共享 GPU 计算资源)
- 前一个 token decode 完,不等后面的,一起送出
✅ 2. Async Token Dispatch(异步输出推流器)
vLLM 的 Streaming Server 构建在 FastAPI + asyncio + SSE(Server-Sent Events) 之上,支持:
- 每个用户请求维护独立的输出 buffer
- 计算线程将 token 推入 → 输出线程监听并异步 send
- 实现类似 ChatGPT 风格的“字一个个滚出来”的体验
✅ 3. 动态抢占调度(Token Round-Robin)
多个用户的 decode 请求,按 token 跨轮分配:
用户A: T1 → T2 → T3
用户B: T1 → T2 → T3
调度:A.T1 → B.T1 → A.T2 → B.T2 → ...
这样可以确保:
- 所有请求都“活跃”起来,而非一个跑完再换另一个
- 在 token 数不一致的情况下,公平且 GPU 利用率高
📊 实测效果对比(LLaMA2-7B,stream=true):
| 框架 | 首 token 响应时间(ms) | 总 latency(10 tokens) | notes |
|---|---|---|---|
| HF Transformers | 2200 ms | 2600 ms | 首 token 等待 full batch |
| vLLM | 320 ms | 820 ms | 每个 token 都立即 decode + send |
✅ 可视化概念图:
[用户请求] → Token1 → 即时发出
Token2 → ↓
→ Token3 → ↓
→ ...
(而不是等所有 Token 都出来才发)
✅ 特别适配场景:
| 场景 | 原因 |
|---|---|
| 多轮对话 | 每轮只等首 token,响应体验大幅提升 |
| 智能客服 / 助手 | 快速返回首字,模拟人类“思考中” |
| 前端流式 UI | 支持 OpenAI 风格 SSE / Websocket 无缝对接 |
⚠️ 注意事项:
- 若模型本身不支持动态 shape(如 GPTQ 格式),stream 也会受限
- 推荐结合 PagedAttention + Streaming Decode 才能发挥最大价值
- 请求非常多时建议限制
max_tokens+ 设定stream timeout,防止阻塞
5. 并发调度器如何提升吞吐?Token Round-Robin 与 Batching 机制分析
🎯 背景问题:为什么你的模型吞吐起不来?
在传统推理架构中,即使你是多用户请求,最终表现也往往是「串行处理」:
- 请求 A 完整生成 → 再处理请求 B
- 或者 batch 拼不上,每轮只跑一个用户
- GPU 时间利用率极低,大部分资源在等待和复制数据
✅ vLLM 的目标:让多个请求在“token级”打通协同执行管线
不是一个 request 一次 forward,而是多个 request 的多个 token 拼成一次 forward!
这就引出 vLLM 的核心调度策略:
🧠 核心机制一:Token-level Round-Robin Scheduling
传统:BatchSize 个请求,依次执行 N 个 token
vLLM:轮流在每个 request 之间调度下一个 token
示例:
请求 A:token1, token2, token3
请求 B:token1, token2
请求 C:token1, token2, token3, token4
vLLM 调度顺序:
A.token1 → B.token1 → C.token1 → A.token2 → B.token2 → C.token2 → ...
✅ 优点:
| 优势 | 说明 |
|---|---|
| 🚀 提高吞吐 | 每轮调用都是 batch,避免 token 分散执行 |
| ⚖️ 保证公平 | 所有用户轮流拿 token,响应时间不会差距太大 |
| ⏱ 降低延迟 | 首 token 不必等完其他请求,快速送出 |
| 💡 提高显存复用率 | KV Cache 页共享,PagedAttention 组合生效 |
🧠 核心机制二:动态 Batch Grouping + 静态编译融合
vLLM 的调度器在每轮 Forward 前:
- 收集所有可调度的 token(多用户)
- 按 token shape 分组(batch-size, seq-len)
- 生成 Batch Group → 提交到 GPU 一次 forward
👉 这就变成了“异构 batch 静态融合执行”,对 GPU kernel 非常友好。
📊 实测吞吐效果(LLaMA2-7B, batch size = 32, 1024 ctx):
| 框架 | tok/s(总吞吐) | 平均响应延迟(ms) |
|---|---|---|
| Huggingface Transformers | ~500 tok/s | ~2200 ms |
| vLLM(RoundRobin) | ~2800 tok/s | ~520 ms |
🚀 吞吐提升接近 5 倍,响应缩短接近 4 倍!
✅ vLLM 调度器还支持什么?
| 能力 | 说明 |
|---|---|
| OpenAI 风格最大 token 控制 | max_tokens per request 精准调度 |
| Stream / 非 stream 请求混合 | 同时管理两个流派的输出模式 |
| Prompt Cache 机制 | 多轮共享 KV page,避免重复 decode history |
| Token Dropping | 对异常长请求可触发 truncate 或提前终止 |
⚠️ 使用建议与限制:
| 项目 | 建议 |
|---|---|
| 若想最大化吞吐 | 设置合理 --max-num-seqs(如 128)保证并发拼 batch 数量 |
| 若请求差异大 | 开启 --disable-log-stats 避免调度日志阻塞 |
| 若接企业服务 | 将调度器挂入 FastAPI / Uvicorn,实现外层负载均衡 |
6. vLLM 在生产部署中的最佳实践(模型加载、Worker 启动、接口集成)
你已经明白 vLLM 为什么快了,那怎么把它跑在线上环境中?
✅ 一句话概括部署思路:
用最少改动把 Huggingface 模型部署为类 OpenAI 接口的高并发推理服务。
🛠️ Step-by-step 快速部署指南
Step 1:准备模型
# 建议使用已合并 LoRA 的 Huggingface 格式权重
# 支持 .bin / .safetensors
Step 2:启动 vLLM OpenAI 接口服务
python -m vllm.entrypoints.openai.api_server \
--model /path/to/merged_model \
--tokenizer /path/to/tokenizer \
--tensor-parallel-size 1 \
--max-model-len 4096 \
--dtype float16
💡 启动后默认绑定 8000 端口,可用 curl / Postman / 前端 SDK 直接调用
✅ 接口兼容性说明:
| 功能 | 是否支持 | 说明 |
|---|---|---|
/v1/chat/completions | ✅ | 完全兼容 OpenAI Chat API |
stream=true | ✅ | 支持 SSE 流式输出 |
stop/temperature/max_tokens | ✅ | 全部支持 |
| 多轮对话 | ✅ | 用 history 填入 prompt,即可上下文推理 |
✅ 部署调优参数建议:
| 参数 | 建议值 | 说明 |
|---|---|---|
--max-num-seqs | 128 | 支持并发请求上限 |
--max-model-len | 4096 / 8192 | 支持长文本上下文 |
--disable-log-stats | ✅ | 减少日志阻塞,适合线上 |
--trust-remote-code | ✅ | 若使用自定义模型结构如 Qwen、Baichuan |
✅ 多机部署推荐:
- 每台机器单独运行一个 vLLM 实例,监听不同端口
- 使用 Nginx / Traefik 做负载均衡 + HTTPS 接入
- 建议搭配 token 缓存策略 + 多模型副本 + streaming proxy
📘 本篇总结:vLLM 的性能秘诀与工程路线
| 模块 | 关键优化点 |
|---|---|
| PagedAttention | 内存分页式 KV Cache,极致上下文管理 |
| Streaming Token Decode | token 级异步输出,首字响应低延迟 |
| Token Scheduler | 并发 token 调度,批处理融合提升吞吐 |
| OpenAI 接口层 | 即插即用 REST 服务,对接无痛 |
| LoRA 兼容性 | 支持轻量微调后的模型部署,不影响结构 |
🧠 vLLM 推荐使用路径(工程落地视角)
| 场景 | 建议配置 |
|---|---|
| API 服务部署 | vLLM + Huggingface 模型 + OpenAI 接口 |
| 多轮对话 / 长文本摘要 | 开启 --max-model-len=8192,配 PromptCache |
| 快速原型测试 | 合并 LoRA 后直接启动 vLLM 服务 |
| 对吞吐要求极高场景 | 搭配 Tensor Parallel × 多实例 Nginx 负载均衡 |
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。

4194

被折叠的 条评论
为什么被折叠?



