TheGkeone

我是真的喜欢胡晓慧(还有段艺璇,勉强加个陈珂韩家乐)

Python计数器collections.Counter用法详解

Python collections.Counter用法详解,Counter 计数器,顾名思义就是用来计数的,最主要的作用就是计算“可迭代序列中”各个元素(element)的数量。具体用法参看目录,基本涵盖了主要用法。 目录 01.统计“可迭代序列”中每个元素的出现的次数 02.统计出现...

2019-08-11 13:53:35

阅读数 13

评论数 0

Python中Numpy.append的用法解析

之前只见过列表list的append方法,昨天写代码的时候,看到了numpy库的append方法,记录一下。 简单的说,该方法功能就是将一个数组附加到另一个数组的尾部。 目录 官方帮助文档 参数 返回值 示例 axis无定义 axis=0的情况 axis=1的情况 axis=0...

2019-05-16 00:51:14

阅读数 238

评论数 0

Numpy.array()详解 、np.array与np.asarray辨析、 np.array和np.ndarry的区别

记录一下numpy.array()的详细用法,以及与np.asarray()和np.ndarray()的区别。 目录 1. Numpy.array()详解 1.1 函数形式 1.2 参数详解 1.3 具体用法 2.Asarray和Array辨析 2.1 object对象是普通迭代序列...

2019-04-06 15:25:45

阅读数 1209

评论数 0

Huffman树(哈夫曼树)、哈夫曼编码、最优前缀码、前缀码

目录 基本概念: 哈夫曼树的构造 哈夫曼树的应用——哈夫曼编码 附:前缀码 基本概念: 需要了解的一些基概念: 路径:结点序列满足是的双亲。 路径长度:路径的分支数。L=k-1 扩充二叉树:在一般二叉树中,将原来的每个空指针都指向一个特殊的结点——外结点,这样的二叉树称为扩充二叉...

2019-03-14 23:13:11

阅读数 195

评论数 0

机器学习的两个指标:ROC曲线和AUC值

目录   ROC曲线的作用 相关概念 ROC空间 ROC曲线 曲线下面积(AUC) ROC曲线的作用 先看一下ROC的字面意思:ROC曲线即接收者操作特征曲线(receiver operating characteristic curve)。 该曲线是一种坐标图式的分析工具,有两...

2019-01-22 13:43:20

阅读数 239

评论数 0

Python zip函数详解+和izip和zip_longest的比较辨析

目录   1. zip()函数 1.1 zip()函数的用法 1.2 zip()函数的应用 1.3 *zip()的用法 2. itertools.izip() 3. itertools.zip_longest() 1. zip()函数 zip是Python的内置函数,通过help...

2018-12-20 20:18:06

阅读数 753

评论数 0

Python 字典dict操作详解-Python字典的排序创建读取修改复制浅复制……

总结一下字典的基本用法。内容参看目录,个人认为还是比较详细的。 目录 1. 什么是字典 2.字典的创建 2.1 手动创建 2.2 使用内置函数dict()创建 3. 字典元素的读取 3.1下标方式读取Value 3.2 get()读取Value 3.3 keys()方法返回“键”...

2018-12-20 00:38:50

阅读数 108

评论数 0

Python序列中元素的访问方式(四)Python数组和列表切片的区别

Python序列中元素的访问方式(一)Python字符串元素的访问、切片与索引 Python序列中元素的访问方式(二)Python列表元素的访问、切片与索引 Python序列中元素的访问方式(三)Python.numpy数组元素的访问、切片与索引 Python序列中元素的访问方式(四)Pyt...

2018-11-24 22:49:22

阅读数 330

评论数 0

Python序列中元素的访问方式(三)Python.numpy数组元素的访问、切片与索引

  Python序列中元素的访问方式(一)Python字符串元素的访问、切片与索引 Python序列中元素的访问方式(二)Python列表元素的访问、切片与索引 Python序列中元素的访问方式(三)Python.numpy数组元素的访问、切片与索引 Python序列中元素的访问方式(四)...

2018-11-24 18:46:50

阅读数 532

评论数 0

Python列表的切片操作与元素访问详解

得到Python的各种序列后,接下里就要知晓如何访问或取出序列中的数据。 看似很简单,其实门道很多,而且随着所学的序列越来越多后,比如字符串、列表、元组、字典、一维数组、多维数组、Series、DataFrame,渐渐的脑子就会混乱,所以打算梳理一下。方便之后自己查找。 其他序列可以参看鄙人的...

2018-11-23 22:54:10

阅读数 745

评论数 0

Python字符串元素的访问与截取

 得到Python的各种序列后,接下里就要知晓如何访问或取出序列中的数据。看着很简单,但是随着所学的序列越来越多后,比如字符串、列表、元组、字典、一维数组、多维数组、Series、DataFrame,渐渐的脑子就会混乱,所以打算梳理一下。先从最简单的字符串开始。其他序列可参看鄙人其他博文,如果我写...

2018-11-23 20:55:41

阅读数 1727

评论数 0

TP真阳性, FP假阳性, FN假阴性, TN真阴性

看着简单,但每次一用就晕,总结一下。   TP、True Positive   真阳性:预测为正,实际也为正 FP、False Positive  假阳性:预测为正,实际为负 FN、False Negative 假阴性:预测与负、实际为正 TN、True Negative 真阴性:预测为...

2018-10-27 19:06:43

阅读数 4318

评论数 0

Python Numpy随机数总结——numpy.random.rand/randn/randint/random/uniform/seed

在学习一些算法的时候,经常会使用一些随机数来做实验,或者说用随机数来添加一些噪声。 下面就总结我平常用到的几个numpy.random库中的随机数和seed函数。 目录 1. rand基本用法 2. randn基本用法 3. 指定数学期望和方差的正态分布 4. random基本用法及和...

2018-10-02 20:48:00

阅读数 798

评论数 0

Python.numpy极简入门

Numpy库一直在用,但从没有去了解过numpy到底是个什么东西,属于知其然但不知其所以然的境界,虽然也没什么大碍,但今天看到某本书里有介绍,看了一下,觉得还不错,可以算是个简单入门吧,所以依照书上的框架复述一遍,写了这篇博文。 目录 1. Numpy简介 2. ndarray对象 2.1...

2018-09-09 16:47:15

阅读数 106

评论数 0

利用Python读取和修改Excel文件(包括xls文件和xlsx文件)——基于xlrd、xlwt和openpyxl模块

  本文介绍一下使用Python对Excel文件的基本操作,包括使用xlrd模块读取excel文件,使用xlwt模块将数据写入excel文件,使用openpyxl模块读取写入和修改excel文件。   目录 1、使用xlrd模块对xls文件进行读操作 1.1 获取工作簿对象 1.2 获...

2018-08-19 16:28:31

阅读数 21395

评论数 1

局部敏感哈希(Locality Sensitive Hashing)和MinHash介绍与实例

在实际应用中,我们所面对的数据是海量的,并且有着很高的维度。在对数据的各种操作中,查询操作是最常见的一种,这里的查询是指输入一个数据,查找与其相似的数据,那么怎样快速地从海量高维数据中,找到与某个数据最相似的数据,成为了一个难点和问题。 低维的小数据集,可通过线性查找来解决,但如果是对一个海量的...

2018-08-12 14:16:58

阅读数 1036

评论数 0

Python输出函数print()总结(python print())

 python版本:python3.5.1 ; IDE:pycharm2017.2 目录 一、print()函数概述 二、变量的输出 三、数据的格式化输出 3.1 %字符 3.2 最小字段宽度和精度 3.3 转换标志 3.4 格式字符归纳 四、换行与防止换行 一、print()...

2018-07-22 16:34:42

阅读数 15770

评论数 5

Python输入函数input()的总结与相应拓展(python input()、 python3 input())

目录 一、正常形式 二、运用异常处理结构 三、接收多个数据 四、利用eval()函数 Python3里面输入函数是input(),该函数将所有的输入都当做string来处理,但是实际运用中,需要各种类型的数据,需要进行转换,且在转换过程中可能会存在各种问题。我针对我最近遇到的几个小习题做...

2018-07-22 02:07:15

阅读数 2297

评论数 0

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)

四个基本概念 TP、True Positive 真阳性:预测为正,实际也为正 FP、False Positive 假阳性:预测为正,实际为负 FN、False Negative 假阴性:预测与负、实际为正 TN、True Negative 真阴性:预测为负、实际也为负。 【一致判真假...

2018-05-10 23:54:06

阅读数 28100

评论数 8

提示
确定要删除当前文章?
取消 删除