算法# 学习目标:贪心算法(一)
学习内容:
贪心算法:采用贪心策略,保证每次操作都是局部最优,从而使得之后结果得到的结果是全局最优的;也适用于全局结果是局部结果的简单之和
学习产出:
解决:区间问题;分配问题。
分配问题1
LeetCode 455 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/assign-cookies
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
优先满足饥饿度最小的孩子,即给剩余孩子中最小饥饿度的孩子分配最小且能饱腹的饼干。
步骤:
- 排序
- 分配选择
代码(python)
class Solution:
def findContentChildren(self, g: List[int], s: List[int]) -> int:
g = sort(g)
s = sort(s)
children,cookie = 0,0
while children < len(g) and cookie <len(s):
if g[children] <= s[cookie]:
children += 1
cookie += 1
return children
分配问题2
LeetCode 135 分发糖果
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
评分更高的孩子必须比他两侧的邻位孩子获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
输入:[1,0,2]
输出:5
解释:你可以分别给这三个孩子分发 2、1、2 颗糖果。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/candy
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
存在比较关系的贪心策略,采取两次遍历,每次遍历只考虑并更新相邻一侧的大小关系
步骤:
- 初始化
- 从左往右遍历
- 从右往左遍历
- 求和统计
代码(python)
class Solution:
def candy(self, ratings: List[int]) -> int:
a = []
for i in range(len(ratings)):#初始化
a.append(1)
for i in range(len(ratings)): #从左往右遍历
if i+1 < len(ratings) and ratings[i] < ratings[i+1]:
a[i+1]=a[i]+1
for i in range(len(ratings)-1,0,-1): #从右往左遍历
if i-1 >= 0 and ratings[i] < ratings[i-1] and a[i-1]<=a[i]:
a[i-1]=a[i]+1
return sum(a)#求和
&spm=1001.2101.3001.5002&articleId=113700305&d=1&t=3&u=5244f0c9378e41609a51987b9e415694)

被折叠的 条评论
为什么被折叠?



