算法学习(十三)

学习内容:

动态规划算法:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
在查找有很多重叠子问题的情况的最优解有效。动态规划保存子问题的解,避免重复计算。

学习产出:

基本动态规划:二维

动态规划

解决动态规划问题的关键是找到状态转移方程,这样就可以通过计算和存储子问题的解来解决最终问题。

LeetCode 64 最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

在这里插入图片描述

示例 1:


输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 13111 的总和最小。
         
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

找到状态转移方程d[i][j] = min(d[i - 1][j],d[i][j - 1]) + grid[i][j]

代码(python)

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m,n = len(grid),len(grid[0])
        d = [[0 for i in range(n)] for j in range(m)]
        for i in range(m):
            for j in range (n):
                if i == 0 and j ==0 :
                    d[i][j] = grid[i][j]
                elif i == 0:
                    d[i][j] = d[i][j-1] +grid[i][j]
                elif j == 0:
                    d[i][j] = d[i-1][j] + grid[i][j]
                else:
                    d[i][j] = min(d[i - 1][j],d[i][j - 1]) + grid[i][j]
        return d[m-1][n-1]
        			

LeetCode 221 最大正方形

在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。
在这里插入图片描述

示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximal-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    

题解

定义 d[i][j] 二维数组表示满足题目条件且以(i,j)为右下角的正方形的面积属性。设d[i][j] = k^2 ,其充分条件为d[i-1][j-1]、d[i][j-1]、d[i-1][j]的值都不小于(k-1)^2,否则(i,j)无法构成边长为k的正方形。同理,如果三个值最小值为k-1,则(i,j)位置一定且最大可以构成一个边长为k的正方形

代码(python)

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        if not matrix or not matrix[0]:
            return 0
        m,n = len(matrix),len(matrix[0])
        max_side = 0
        d = [[0 for i in range(n+1)] for j in range(m+1)]
        for i in range(1,m+1):
            for j in range(1,n+1):
                if matrix[i-1][j-1] == '1':
                    d[i][j] = min(d[i-1][j-1],min(d[i][j-1],d[i-1][j]))+1
                max_side = max(max_side,d[i][j])
        return max_side*max_side
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值