算法# 学习目标:动态规划算法(二 )
学习内容:
动态规划算法:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
在查找有很多重叠子问题的情况的最优解有效。动态规划保存子问题的解,避免重复计算。
学习产出:
基本动态规划:二维
动态规划
解决动态规划问题的关键是找到状态转移方程,这样就可以通过计算和存储子问题的解来解决最终问题。
LeetCode 64 最小路径和
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
找到状态转移方程d[i][j] = min(d[i - 1][j],d[i][j - 1]) + grid[i][j]
代码(python)
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
m,n = len(grid),len(grid[0])
d = [[0 for i in range(n)] for j in range(m)]
for i in range(m):
for j in range (n):
if i == 0 and j ==0 :
d[i][j] = grid[i][j]
elif i == 0:
d[i][j] = d[i][j-1] +grid[i][j]
elif j == 0:
d[i][j] = d[i-1][j] + grid[i][j]
else:
d[i][j] = min(d[i - 1][j],d[i][j - 1]) + grid[i][j]
return d[m-1][n-1]
LeetCode 221 最大正方形
在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。

示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximal-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
定义 d[i][j] 二维数组表示满足题目条件且以(i,j)为右下角的正方形的面积属性。设d[i][j] = k^2 ,其充分条件为d[i-1][j-1]、d[i][j-1]、d[i-1][j]的值都不小于(k-1)^2,否则(i,j)无法构成边长为k的正方形。同理,如果三个值最小值为k-1,则(i,j)位置一定且最大可以构成一个边长为k的正方形
代码(python)
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
if not matrix or not matrix[0]:
return 0
m,n = len(matrix),len(matrix[0])
max_side = 0
d = [[0 for i in range(n+1)] for j in range(m+1)]
for i in range(1,m+1):
for j in range(1,n+1):
if matrix[i-1][j-1] == '1':
d[i][j] = min(d[i-1][j-1],min(d[i][j-1],d[i-1][j]))+1
max_side = max(max_side,d[i][j])
return max_side*max_side
&spm=1001.2101.3001.5002&articleId=113877150&d=1&t=3&u=af8946b267a442d9937f6fd5d7148fe4)
6万+

被折叠的 条评论
为什么被折叠?



