排序:
默认
按更新时间
按访问量

神经网络的提升方法(1)——交叉熵

本文是电子书Neural Networks and Deep Learning的读书笔记,我不能保证自己理解是否有偏误或者忽略了原文的精彩地方,如有请读者指出,另外还是推荐英文阅读能力较强的读者直接去阅读原书,因为写得真的不错。原书地址:http://neuralnetworksanddeeple...

2018-08-27 11:38:21

阅读数:1276

评论数:3

模型融合方法

本文是《KAGGLE ENSEMBLING GUIDE》一文的阅读笔记,忽略了一些不感兴趣的内容,原文请阅:https://mlwave.com/kaggle-ensembling-guide/ 模型融合是kaggle等比赛中经常使用到的一个利器,它通常可以在各种不同的机器学习任...

2017-05-05 09:36:50

阅读数:19091

评论数:0

神经网络的提升方法(2)——正则化

在本文之前,我写过一篇关于交叉熵的译文,本文则是电子书《Neural Networks and Deep Learning》的第三章第二部分。如需查看之前关于交叉熵的文章,请打开http://blog.csdn.net/sinat_29819401/article/details/58716834

2017-03-08 23:11:44

阅读数:5336

评论数:3

深度森林论文阅读笔记

本文是《机器学习》作者周志华教授和冯霁博士在2017年2月28日发表的论文《Deep Forest: Towards An Alternative to Deep Neural Networks》的阅读笔记,因此本文不会一字一句的翻译过来,但会加入我自己的理解,如有谬误请读者指正。新智元(http...

2017-03-04 00:18:34

阅读数:12262

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭