sinat_tangsipeng
码龄10年
求更新 关注
提问 私信
  • 博客:26,956
    26,956
    总访问量
  • 10
    原创
  • 8
    粉丝
  • 162
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2015-08-24
博客简介:

Peacemaker的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得11次评论
  • 获得36次收藏
  • 博客总排名2,265,978名
创作历程
  • 9篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • tensorflow
    2篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvtensorflowpytorchnlpscikit-learn聚类集成学习迁移学习回归
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

66人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

目标跟踪算法

1、深度学习-单目标-孪生网络方向siamfcsiamrpndasiamrpndeeper and wider siamrpnsiamrpn++atomcascaded siamprncoarse-to-fine siamrpnSiamMaskDimPTarget-Aware Deep Tracking2、多目标跟踪sort、deepsort https://git...
原创
发布博客 2019.11.24 ·
568 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

中国计算机学会推荐国际学术会议和期刊(A类)2019年

中国计算机学会推荐国际学术会议(人工智能)一、A 类序号会议简称会议全称出版社网址1 AAAIAAAI Conference on ArtificialIntelligenceAAAI http://dblp.uni-trier.de/db/conf/aaai/2 NeurIPSAnnual Conference on NeuralInformation P...
原创
发布博客 2019.04.28 ·
5906 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

【论文学习总结】FOTS: Fast Oriented Text Spotting with a Unified Network

参考:https://arxiv.org/pdf/1801.01671.pdfhttps://blog.csdn.net/yang_daxia/article/details/88047035https://blog.csdn.net/zhangwl27/article/details/86544941https://blog.csdn.net/qq_14845119/articl...
原创
发布博客 2019.04.14 ·
2543 阅读 ·
1 点赞 ·
4 评论 ·
3 收藏

【论文学习总结】Shape Robust Text Detection with Progressive Scale Expansion Network

推荐学习理由:旷世18年6月提出的PSENET,论文被CVPR2019接收。整体上沿用主流的像素的语义分割的方法,提出利用不同尺寸的shrinking产生文本“核”再用渐进的尺度扩展算法来有效区分相邻文本。作者在19年3月重新发布论文,并正式开源了代码。在FMeasure指标上,ICDAR2015获得了87.21(resnet152),在ICDAR2017 MLT获得了72.45(resnet15...
原创
发布博客 2019.04.06 ·
1240 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【学习总结】Pixel-Anchor: A Fast Oriented Scene Text Detector with Combined Networks

推荐学习理由:2018年11月云从科技提出的Pixel-Anchor,结合anchor-based和pixel-based的检测方法的特性,取长补短,并解决了长文本的检测,在FMeasure上,ICDAR2015获得了87.68,在ICDAR2017 MLT获得了74.54。参考:https://arxiv.org/abs/1811.07432https://blog.csdn.net...
原创
发布博客 2019.03.30 ·
1785 阅读 ·
0 点赞 ·
3 评论 ·
3 收藏

【学习总结】EAST: An Efficient and Accurate Scene Text Detector

EAST: An Efficient and Accurate Scene Text Detector参考:https://arxiv.org/abs/1704.03155https://blog.csdn.net/liuxiaoheng1992/article/details/82870923https://blog.csdn.net/sdlypyzq/article/de...
原创
发布博客 2019.03.23 ·
397 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文翻译】Scene Text Detection and Recognition: The Deep Learning Era(上)

摘要-随着深度学习的兴起和发展,计算机视觉得到了极大的改变和重塑。作为计算机视觉领域的一个重要研究领域,场景文本的检测和识别已经不可避免地受到这股革命浪潮的影响,从而进入了深度学习的时代。近年来,这方面的社区在思维、方法和效果上取得了重大进展。本次调研旨在总结和分析深度学习时代场景文本检测与识别的重大变化和重大进展。通过本文,我们致力于:(1)介绍新的见解和想法;(2)突出最近的技术和基准;...
翻译
发布博客 2019.03.20 ·
4238 阅读 ·
0 点赞 ·
1 评论 ·
6 收藏

【论文翻译】Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

Abstract 由于人脸认证系统的高安全性需求,面部反欺骗(a.k.a演示攻击检测)已引起越来越多的关注。当训练和测试欺骗样本拥有相似的模式时,现有的基于CNN的方法通常很好地识别欺骗攻击,但它们的性能会在未知场景的测试欺骗攻击上急剧下降。在本文中,我们试图通过设计两个新颖性的CNN模型来提高方法的泛化能力和适用性。首先,我们针对CNN模型提出了一种简单但有效的总成对混淆(TPC)损失函数,...
原创
发布博客 2019.03.03 ·
3142 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

ImageProjectiveTransform 错误解决办法

 tf.train.import_meta_graph  报错Traceback (most recent call last): File "freeze_graph.py", line 109, in <module> main(parse_arguments(sys.argv[1:])) File "freeze_graph.py", line 50, ...
原创
发布博客 2019.01.06 ·
1386 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

人工智能资料汇总记录

顶会 世界顶级人工智能会议的总结https://blog.csdn.net/u011447369/article/details/70172048 综述 文本识别白翔2018  https://cloud.tencent.com/developer/article/1154619Awesome-Scene-Text-Recognition  https://gi...
原创
发布博客 2018.07.28 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

tensorflow中3种常用图片数据的训练方式及性能分析

摘要:本文对比了:原图、tobytes、gfile三种方式的图片数据的训练文件大小、训练时长、GPU利用率等指标,通过实际数据分析这3种训练方式的优缺点;明确指出gfile训练方式具有最佳的空间占用和GPU利用率;行文中强调了初学者容易犯错的tf.decode_raw 、 tf.image.decode_jpeg、tf.image.convert_image_dtype、tf.image.resize_images函数的使用方法;旨在减少大家在相关问题上为此付出的检索时间 目录1、引入
原创
发布博客 2018.07.21 ·
5406 阅读 ·
3 点赞 ·
2 评论 ·
16 收藏