8月第四周

原创 2017年10月03日 20:19:17

8.24

zoom:1 的作用

http://blog.csdn.net/u010313768/article/details/47067593
根据这篇文章我又沿着问题链了解了很多关于清除浮动和IE的知识
关于清除浮动,严格来说是闭合浮动,可以参考下文来了解:
http://www.iyunlu.com/view/css-xhtml/55.html
这篇文章详细描述了清除浮动的七种方法,这些方法主要分为两大类:

  • clear:both
  • BFC(块级格式化上下文)

IE中的hasLayout与BFC类似,原文中是这样描述的

IE6-7使用布局的概念来控制元素的尺寸和定位,那些拥有布局(have layout)的元素负责本身及其子元素的尺寸设置和定位。如果一个元素的 hasLayout 为false,那么它的尺寸和位置由最近拥有布局的祖先元素控制。

transform对普通渲染的影响

http://www.zhangxinxu.com/wordpress/2015/05/css3-transform-affect/
可以利用transform的影响使overflow:hidden对absolute有效

纯CSS实现各种图标的绘制

搜索如何用css实现三角形的时候发现了一篇好文
http://www.cnblogs.com/dongtianee/p/4563084.html
沿着问题链找到了一个用CSS实现各种图标的网站:http://www.uiplayground.in/css3-icons/
想锻炼自己对于CSStransform的掌握时可以写写看

CSS实现元素的隐藏和显示

提供三种思路

  • label+checkbox方法
  • hover+子选择器
  • focus+兄弟选择器

display:table和display:table-cell

CSS层叠上下文

http://www.zhangxinxu.com/wordpress/2016/01/understand-css-stacking-context-order-z-index/
(最近看了好多ZXX大大的博客,他的博客都有环环相扣的链接)

CSS3之filter属性

filter滤镜属性,顾名思义,可以对元素进行图像处理

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_31231955/article/details/78156091

机器学习第四周

可怕,我已经overdue了两个星期的课程了,看到最后全部程序测试通过,我真的好感动。...
  • Clifnich
  • Clifnich
  • 2016-09-02 10:40:07
  • 595

AndrewNg机器学习第四周作业:关于使用逻辑回归、神经网络训练数据并应用之的心得

ex3的作业是根据已有的数据集 (20*20像素的图片,每个像素是一个feature,总共400个features,400个features作为输入X,数据集已经包含输出的y,代表这是什么数字) ...
  • csd54496
  • csd54496
  • 2016-10-30 21:57:15
  • 1347

machine-learning第四周 上机作业

本周开始学习大名鼎鼎的神经网络,赶脚忽然高大上了有木有,一键识别直男腐女,想想都醉了。话不多说,本期作业要点:...
  • dialoal
  • dialoal
  • 2016-01-12 18:11:42
  • 1543

机器学习-学习笔记 学习总结归纳(第四周)

引言 学习经验(数据),产生模型,进行判断机器学习致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。 数据集 - 示例(样本) - 属性 - 特征 - 属性空间(样本空间(输入空间))- ...
  • linglian0522
  • linglian0522
  • 2017-07-07 20:12:58
  • 509

第四周实习记

这一周是生产实习的最后一周,要完成任务交报告了。 所以这可以算是最有意义的一周,即使所做的事不算很有实际意义。实验报告写好了,以下是初稿。(如果有空,会修改再上交)生产实习报告为了巩固大学所学的理论知...
  • Windy83
  • Windy83
  • 2007-04-01 12:18:00
  • 1932

吴恩达deepleaning第四课第四周选择题、编程题

  • 2017年11月20日 17:06
  • 50.96MB
  • 下载

Coursera机器学习-第四周-Neural Network ForwardPropagation

Neural NetWork的由来先考虑一个非线性分类,当特征数很少时,逻辑回归就可以完成了,但是当特征数变大时,高阶项将呈指数性增长,复杂度可想而知。如下图:对房屋进行高低档的分类,当特征值只有x1...
  • dingchenxixi
  • dingchenxixi
  • 2016-05-14 10:24:30
  • 3255

Coursera—machine learning(Andrew Ng)第四周编程作业

lrCostFunction.m function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTION Compu...
  • ccblogger
  • ccblogger
  • 2017-11-08 10:59:00
  • 670

《深度学习——Andrew Ng》第一课第四周编程作业

Building your Deep Neural Network: Step by Step
  • sinat_34022298
  • sinat_34022298
  • 2017-10-14 21:55:59
  • 3429

吴恩达机器学习笔记_第四周

神经网络——模型表示: 为什么需要非线性分类器(非线性假设):维数大的时候(例如图片),特征元素个数将大的不能接受.   历史:80年代和90年代早期广泛应用,但90年代后期开始衰落.最近又东山...
  • hunterlew
  • hunterlew
  • 2016-04-18 20:37:39
  • 2273
收藏助手
不良信息举报
您举报文章:8月第四周
举报原因:
原因补充:

(最多只允许输入30个字)