mmdnn实现模型转换

一、mxnet转tensorflow模型 1.下载mmdnn源码或pip安装,切换到mmdnn主目录下;安装时需要安装numpy+mkl的最新版本,准备好 mxnet模型的 .json文件和.params文件。 2.运行命令行: python -m mmdnn.conversion._sc...

2019-04-02 23:21:19

阅读数 46

评论数 0

基于tensorflow的完全量化

  加入tf.contrib.quantize.create_train_graph()和tf.contrib.quantize.create_eval_graph()两个伪量化函数在训练代码中,属于完全量化的一个步骤,就是quantization aware training 方法,加入两句话...

2019-02-25 22:10:54

阅读数 99

评论数 0

深度学习之——Batch Norm

细节详见:https://blog.csdn.net/hjimce/article/details/50866313

2019-01-27 21:48:51

阅读数 63

评论数 0

修改已知模型的变量名

import tensorflow as tf import os from tensorflow.python import pywrap_tensorflow model_path="./checkPointModel/" # newModel ch...

2019-01-22 23:14:16

阅读数 114

评论数 0

基于minist数据集的模型训练与准备

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data minst=input_da...

2019-01-15 23:00:22

阅读数 98

评论数 0

Tensorflow中checkPoint到tflite模型的转换

一、ckpt模型转换为frozen_graph.pb模型 import tensorflow as tf def freeze_graph(input_checkpoint, output_graph): output_node_names = "output&am...

2019-01-15 22:32:45

阅读数 562

评论数 0

MTCNN人脸及特征点检测---代码应用详解(基于ncnn架构)

转自:https://blog.csdn.net/fuwenyan/article/details/77573755?locationNum=5&fps=1# 本文主要讲述当你拿到MTCNN的caffemodel后,如何使用它对一张图里的人脸进行检测和特征点标定。 相当...

2018-10-28 11:43:08

阅读数 171

评论数 0

边框回归(Bounding Box Regression)

转自:https://blog.csdn.net/zijin0802034/article/details/77685438  

2018-10-28 11:01:45

阅读数 441

评论数 0

tf.train.exponential_decay(学习率衰减)的使用

import tensorflow as tf import matplotlib.pyplot as plt sess=tf.Session() learning_rate=0.001 groable=tf.Variable(tf.constant(0)) lrate=tf.train.exp...

2018-09-19 23:04:49

阅读数 659

评论数 0

tf.get_variable函数的使用

tf.get_variable(name,  shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种: tf.constant_initializer:常量初始化函数 tf.random_nor...

2018-08-07 20:10:41

阅读数 202

评论数 0

1X1卷积核的作用

1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维  3)减少卷积核参数(简化模型) 部分转载自caffe.cn 作用: 1. 实现跨通道的交互和信息...

2018-08-07 17:37:07

阅读数 86

评论数 0

TensorFlow 到底有几种模型格式?

  用过 TensorFlow 时间较长的同学可能都发现了 TensorFlow 支持多种模型格式,但这些格式都有什么区别?怎样互相转换?今天我们来一一探索。 1. CheckPoint(*.ckpt) 在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“chec...

2018-08-07 16:02:06

阅读数 3454

评论数 0

pthon字符串操作

1、切片操作:str[start:end:step]包括头,不包括尾巴step为步长,意思是每隔step-1个元素,取一个字符"while"[::-1] 反向取字符串,实现字符串的反转--》"elihw"2、方法:字符串的修饰...

2018-06-08 22:20:46

阅读数 115

评论数 0

如何清除C:\Users\Administrator\AppData\Local\Microsoft\Windows\Temporary Internet Files下的隐藏文件

1.点C盘属性---磁盘清理---Internet临时文件”--- “查看文件”2.点文件夹后退则看到所有文件,选好删除即可

2018-05-26 14:50:39

阅读数 5601

评论数 0

机器学习常见10大算法图解

通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。以后有时间再对单个算法做深入地解析。今天的算法如下:决策树随机森林算法逻辑回归SVM...

2018-05-05 10:34:12

阅读数 424

评论数 0

机器学习中训练集、验证集和测试集

通常,在训练有监督的机器学习模型的时候,会将数据划分为训练集、验证集合测试集,划分比例一般为0.6:0.2:0.2。对原始数据进行三个集合的划分,是为了能够选出效果(可以理解为准确率)最好的、泛化能力最佳的模型。训练集(Training set)作用是用来拟合模型,通过设置分类器的参数,训练分类模...

2018-05-05 10:12:21

阅读数 222

评论数 0

浅析机器学习中的模型选择与调参(cross validation + grid search)

对于一个预测问题,同时有多种可用的模型,每种模型有多种可用的参数。如何选择一个最合适的模型?总题过程分为2个部分:            1.对于一个模型,如何评估该模型在特定问题上的好坏?            2.选择了最好的模型后,如何选择最优的参数?对于模型的评估,我们一般使用交叉验证(c...

2018-05-04 16:04:33

阅读数 139

评论数 0

Numpy常用函数操作

其重要功能如下: 1. ndarray,一个具有矢量运算和复杂广播能力的快速且节省空间的多维数组。 2. 用于对数组数据进行快速运算的标准数学函数(无需编写循环)。 3. 线性代数、随机数生成以及傅里叶变换功能。import numpy as np1.数据创建函数Demo:data = [1.1,...

2018-03-12 09:38:41

阅读数 120

评论数 0

python常见的内置函数

写在前面:本文专注于python常见的内置函数、模块,不包括numpy、scipy、pandas等1.utf-8编码# -*- coding: utf-8 -*-12.内存管理import gc del obj #删除对象名 gc.collect()1233.文件读取以如下文件为例,文件名为...

2018-03-12 09:36:52

阅读数 404

评论数 0

基于2D的人脸跟踪显示

// FaceTrack.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include "opencv2/opencv.hpp" #include "Kinect.h" #include &q...

2017-12-01 15:53:00

阅读数 211

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭