临界知识---效率突围

这条音频介绍一个关于学习的新概念:临界知识。
越来越多的人意识到,终身学习知识很重要。但是,什么是知识呢?鲁迅笔下的孔乙己说“回”字有四种写法,是不是知识?朋友圈里对一个大型活动的吐槽是不是知识?网上到处可见的直播、分享是不是知识?最近有本新书《好好学习:个人知识管理精进指南》,作者成甲是知识管理达人、“得到”说书人。他在书里分享了一个观点,学习应该学临界知识。这是什么意思呢?我来给你说说。
成甲对知识的定义,是那些可以改变你行动的信息。如果你看了一篇文章之后连连赞叹,结果生活照旧,那这篇文章也不过是一个信息而已。如果你看完文章之后受到启发,改进了思考问题的方式或者做事的方法,这个信息才是知识。
但是知识和知识是不一样的,有些知识对我们行为的影响更大。比如石头从山上滚下来会越滚越快,就是一个有用的知识。不过,如果你懂得牛顿第二定律,也就是物体加速度的大小跟作用力成正比,跟物体的质量成反比,就不光能解释为什么下落的物体速度越来越快,甚至有可能想办法造出火箭。像牛顿第二定律这种能更广泛、更普遍地指导我们行动的基本规律,成甲定义为“临界知识”。如果我们能掌握临界知识,并且应用到生活里,甚至能预测和控制未来。
那么,怎样发现临界知识呢?
我们先得学会对知识进行管理。知识管理最重要的不是收集、分类、保存,而是提升我们的认知深度,改变我们的行为模式。
怎么提升认知深度呢?先来说说,什么才算深度认知。比如有人问:大城市的房价为什么这么高?有人说,都是炒房团炒的。有人说,大城市土地供应稀缺,而高购买力的人群又过度集中,所以推高了房价。你看这两种回答,第一种就属于对问题的浅认知,但是第二种不局限于具体问题,而是分析现象后找出普遍性的规律,就属于深度认知。所以说,在分析问题的时候,能够跳出问题本身,思考更普遍的情况;在寻求答案的时候,能根据理由的可信度判断要不要接受这个结论。这种思考方式,就是对知识的深度认知。
通过深度认知得出的结论,往往能解释相似情景中的很多问题,这些结论有的经过长期验证,在更普遍的领域具有指导意义和应用价值,也就是我们前边说的临界知识。掌握临界知识,我们就能“四两拨千斤”,极大地提升学习效率。
说到提高学习效率,可能是每个人都追求的,但为什么很多人的效率就是上不去呢?这是因为大多数人都把时间花在提升“技术效率”,而不是“认知效率”上,什么意思呢?就是说,我们学习的内容如果仅仅是用来应对具体工作和问题的,就是在提升技术效率,在这种模式下,遇到每个新问题,都要学习新知识。看上去很努力,实际上一直在原地打转。但如果我们的学习是在了解问题的本质,了解问题的底层规律,那我们就是在提升认知效率,在这种模式下,很多看上去全新的问题,不过是新瓶装旧酒,换了个说法。
说了这么多,到底哪些知识值得学习呢?知识不是学得越多越好,也不是只学某个专业的知识,而是要学习解决某一类问题相关的所有核心能力。比如想要做好市场营销,就不能只学市场营销的教材,而是要涉及到心理学、经济学、历史等等的知识。只要掌握了底层规律,具体的、技术层面的问题都好解决。
最后总结一下,我们学习的目的是掌握临界知识,也就是更广泛、更普遍的基本的规律。要寻找临界知识,需要我们提高认知效率,培养深度认知的能力。这个观点供你参考。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值