GitHub 标星 2.3k+,比个手势,AI 自动识别 Emoji!

关注 “GitHubDaily”

设为 “星标”,每天带你逛 GitHub!

转自量子位,作者圆栗子

一只手势识别 AI,怎样才算得上 (优) 秀啊?

不停地变换姿势,都能实时输出 Emoji,大约是很秀了:

????是来自《星际旅行》瓦肯的举手礼。不大常用,做起来甚至有难度。

????是好运,一般会两只手一起比。不过,也不是人类通用的手势。

即便这样,AI 依然机智地识别出来。并且,它是在浏览器上跑,也几乎没有延时

AI 的爸爸,名字叫 Nick Bourdakos (简称 “尼克”) ,是来自 IBM 的程序猿。

尼克把自己的调教成果发了推特,揽下 2.8 万赞

 666

尼克用的是 TensorFlow.js,实时识别毫无压力。

他把算法开源了,说大家都可以试一试。

半小时就好

尼克说这个模型很简单,就是 SSD-MobileNet

MobileNet 是分类,SSD 是目标检测,搭配食用也是常规方法。

他是用 IBM 云上的 GPU 训练的,免费的 k80,半小时就训练好了。

在训练开始之前,要先准备数据:AI 吃的是标注过的手势图

准备就绪,就来安装模型吧:

1$ npm install -g cloud-annotations

然后,可以开始训练了:

 1$ cacli
 2┌─────────────────────────────┐
 3│ (C)loud (A)nnotations (CLI) │
 4│ version 1.0.12              │
 5└─────────────────────────────┘
 6
 7Usage: cacli <command>
 8
 9where <command> is one of:
10  init         Interactively create a config.yaml file
11  train        Start a training run
12  logs         Monitor the logs of a training run
13  progress     Monitor the progress of a training run
14  list         List all training runs
15  download     Download a trained model
16
17cacli <cmd> -h     quick help on <cmd>

当然,也不是非要用 IBM 云,也不是非要用 GPU。拿 CPU 也能调教 AI,大概要几小时吧。

训练完成,该在浏览器上跑了。GitHub 项目里,自带了转换为 TensorFlow.js 模型的脚本。

把模型添加到 React App 里面。

最后,写一句 nmp start,用浏览器打开 http://localhost:3000。

耶,这样就可以对着屏幕随意舞动手指了,你的 AI 会明白的:

当然,这只机智的 AI,才不是只能识别手指。

喝点什么

只看你用什么样的数据去投喂 AI 了。

曾经,尼克就帮 AI 修炼了分辨汽水的眼力。

第一题:一瓶雪碧,一瓶 Canada Dry,都是绿色。

不管调换位置、还是侧过瓶身,AI 都不会被迷惑。定格一看:

第二题:加大难度,两瓶都是 Mountain Dew,一瓶普通一瓶低糖。

AI 依然分得清楚,毫不犹豫。

分辨手势,分辨汽水,都不失水准。

那么问题来了,你想让 AI 识别什么呢?

想好了就开始调教吧,代码在这里:

https://github.com/cloud-annotations/training/

P.S. 推特评论区,已经有小伙伴亲测成功,并表示 Easy。

 再把识别结果,显示成 Emoji 就完美了


这么好玩的东西,赶紧来玩一下吧!

---

以上,便是今日分享,觉得不错,还请点个在看,谢谢~

推荐阅读:

URL 地址栏能玩出什么新花样?这位歪果程序员小哥给你开开脑洞!

从 6 万用户评论中,选出 23 门全世界最好的 CS 免费课!

GitHub 标星 5w+,计算机小白到大牛的学习之路!

「GitHub 交流群」已开放

想入群的可在公众号后台回复「入群」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值