“Recursive Deep Models for Semantic Compositionality Over Sentiment Treebank”这篇论文发表于 EMNLP 2013,主要作者是 Richard Socher,非常响当当的人物,在NLP方向的论文中,经常可以看到这个名字, Socher的在2010-2015年间的很多工作都与递归神经网络有关,Recursive Neural Network 很多地方会把它也简写为 RNN ,与循环神经网络同名,为了区别,我一般会写成 RvNN。
Socher在这篇论文之前已经有好几篇关于 RvNN 的论文了(如果感兴趣可以看文中的参考文献部分,其中 Socher 为第一作者的基本上都是RvNN相关的工作),我没有仔细看他之前的论文,这些相关的工作在斯坦福大学的有关深度学习的公开课中都有提及,例如CS224N之类的。实际上,这篇论文就像是之前一系列工作的一个总结,之前的一些工作在本文中都可以找到介绍。
1.主要解决问题
论文中有两项工作:
- 提出 RNTN 模型,也是 RvNN 的一个变种。
- 介绍 Stanford Sentiment Treebank(SST),也是后面论文中广泛使用的一个数据集
根本来说, RNTN 的提出还是解决 Semantic Composition 的问题,简单来说就是,如何从单词出发,得到句子或者短语的表示,例如,在之前的工作中我们有 word2vec 和 Glove等词向量,那么现在的问题就是如何从这些词向量得到句子的向量表示
2. 背景介绍
关于 Seman

这篇论文介绍了RNTN模型,作为RvNN的变种,旨在解决语义组合问题,从单词到句子的表示。通过Stanford Sentiment Treebank(SST)数据集进行实验,展示了模型在情感分类任务中的效果。RNTN通过固定参数量的Neural Tensor Layer改进了MV-RNN,提高了组合表达能力。
最低0.47元/天 解锁文章
2853

被折叠的 条评论
为什么被折叠?



