论文笔记:Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank 递归神经网络总结

这篇论文介绍了RNTN模型,作为RvNN的变种,旨在解决语义组合问题,从单词到句子的表示。通过Stanford Sentiment Treebank(SST)数据集进行实验,展示了模型在情感分类任务中的效果。RNTN通过固定参数量的Neural Tensor Layer改进了MV-RNN,提高了组合表达能力。
摘要由CSDN通过智能技术生成

“Recursive Deep Models for Semantic Compositionality Over Sentiment Treebank”这篇论文发表于 EMNLP 2013,主要作者是 Richard Socher,非常响当当的人物,在NLP方向的论文中,经常可以看到这个名字, Socher的在2010-2015年间的很多工作都与递归神经网络有关,Recursive Neural Network 很多地方会把它也简写为 RNN ,与循环神经网络同名,为了区别,我一般会写成 RvNN。
Socher在这篇论文之前已经有好几篇关于 RvNN 的论文了(如果感兴趣可以看文中的参考文献部分,其中 Socher 为第一作者的基本上都是RvNN相关的工作),我没有仔细看他之前的论文,这些相关的工作在斯坦福大学的有关深度学习的公开课中都有提及,例如CS224N之类的。实际上,这篇论文就像是之前一系列工作的一个总结,之前的一些工作在本文中都可以找到介绍。

1.主要解决问题

论文中有两项工作:

  • 提出 RNTN 模型,也是 RvNN 的一个变种。
  • 介绍 Stanford Sentiment Treebank(SST),也是后面论文中广泛使用的一个数据集

根本来说, RNTN 的提出还是解决 Semantic Composition 的问题,简单来说就是,如何从单词出发,得到句子或者短语的表示,例如,在之前的工作中我们有 word2vec 和 Glove等词向量,那么现在的问题就是如何从这些词向量得到句子的向量表示

2. 背景介绍

关于 Seman

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值