1019 General Palindromic Number (20)(20 分)
A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.
Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N > 0 in base b >= 2, where it is written in standard notation with k+1 digits a~i~ as the sum of (a~i~b^i^) for i from 0 to k. Here, as usual, 0 <= a~i~ < b for all i and a~k~ is non-zero. Then N is palindromic if and only if a~i~ = a~k-i~ for all i. Zero is written 0 in any base and is also palindromic by definition.
Given any non-negative decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.
Input Specification:
Each input file contains one test case. Each case consists of two non-negative numbers N and b, where 0 <= N <= 10^9^ is the decimal number and 2 <= b <= 10^9^ is the base. The numbers are separated by a space.
Output Specification:
For each test case, first print in one line "Yes" if N is a palindromic number in base b, or "No" if not. Then in the next line, print N as the number in base b in the form "a~k~ a~k-1~ ... a~0~". Notice that there must be no extra space at the end of output.
Sample Input 1:
27 2
Sample Output 1:
Yes
1 1 0 1 1
Sample Input 2:
121 5
Sample Output 2:
No
4 4 1
分析
判断回文序列
输入 N-数(10进制) B-进制
若N在B进制下是回文序列,输出Yes,否则No,然后输出序列
问题
测试点5一直不能通过,后来发现是N=0时,进入不了循环,不能进行进制转化,就不能输出序列。(一开始没注意到N可以是0……)
代码
#include <iostream>
#include <map>
#include <vector>
#include <algorithm>
#include <string>
#include<stack>
using namespace std;
void change(int n,int r,int *a,int &i){
i = 0;
stack<int> s;
while(n)
{
s.push(n%r);
n/=r;
}
while(!s.empty())
{
a[i] = s.top();
i++;
s.pop();
}
}
int ishuiwen(int a[],int k){
int b[1000];
int i;
for(i = 0;i<k;i++){
b[i] = a[k-1-i];
}
for(i = 0;i<k/2;i++){
if(a[i]!=b[i]) return 0;
}
return 1;
}
int main(){
int a,b;
int c[1000]={0};
int k;
cin>>a>>b;//change(a,b);
change(a,b,c,k);
if(ishuiwen(c,k)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
if(a==0) cout<<0;
for(int i = 0;i<k;i++) {
cout<<c[i];
if(i!=k-1) cout<<" ";
}
return 0;
}
该博客讨论了如何判断一个十进制数在给定的任意进制下是否为回文数。通过分析、问题阐述和代码展示,解释了回文数的概念并提供了解决方案。当输入的十进制数N在给定的进制b下是回文数时,输出"Yes",否则输出"No"。此外,还需以给定进制输出N的表示形式。
988

被折叠的 条评论
为什么被折叠?



