PAT-甲级-1019 General Palindromic Number

该博客讨论了如何判断一个十进制数在给定的任意进制下是否为回文数。通过分析、问题阐述和代码展示,解释了回文数的概念并提供了解决方案。当输入的十进制数N在给定的进制b下是回文数时,输出"Yes",否则输出"No"。此外,还需以给定进制输出N的表示形式。
摘要由CSDN通过智能技术生成

1019 General Palindromic Number (20)(20 分)

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N > 0 in base b >= 2, where it is written in standard notation with k+1 digits a~i~ as the sum of (a~i~b^i^) for i from 0 to k. Here, as usual, 0 <= a~i~ < b for all i and a~k~ is non-zero. Then N is palindromic if and only if a~i~ = a~k-i~ for all i. Zero is written 0 in any base and is also palindromic by definition.

Given any non-negative decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

Input Specification:

Each input file contains one test case. Each case consists of two non-negative numbers N and b, where 0 <= N <= 10^9^ is the decimal number and 2 <= b <= 10^9^ is the base. The numbers are separated by a space.

Output Specification:

For each test case, first print in one line "Yes" if N is a palindromic number in base b, or "No" if not. Then in the next line, print N as the number in base b in the form "a~k~ a~k-1~ ... a~0~". Notice that there must be no extra space at the end of output.

Sample Input 1:

27 2

Sample Output 1:

Yes
1 1 0 1 1

Sample Input 2:

121 5

Sample Output 2:

No
4 4 1

分析

判断回文序列

输入 N-数(10进制) B-进制

若N在B进制下是回文序列,输出Yes,否则No,然后输出序列

 

问题

测试点5一直不能通过,后来发现是N=0时,进入不了循环,不能进行进制转化,就不能输出序列。(一开始没注意到N可以是0……)

 

代码 

#include <iostream>
#include <map>
#include <vector>
#include <algorithm>
#include <string>
#include<stack>
using namespace std;
void change(int n,int r,int *a,int &i){
    i = 0;
    stack<int> s;
    while(n)
    {
        s.push(n%r);
        n/=r;
    }
    while(!s.empty())
    {
        a[i] = s.top();
        i++;
        s.pop();
    }
}
int ishuiwen(int a[],int k){
    int b[1000];
    int i;
    for(i = 0;i<k;i++){
        b[i] = a[k-1-i];
    }
    for(i = 0;i<k/2;i++){
        if(a[i]!=b[i]) return 0;
    }
    return 1;
}
int main(){
    int a,b;
    int c[1000]={0};
    int k;
    cin>>a>>b;//change(a,b);
    change(a,b,c,k);
    if(ishuiwen(c,k)) cout<<"Yes"<<endl;
    else cout<<"No"<<endl;
    if(a==0) cout<<0;
    for(int i = 0;i<k;i++) {
        cout<<c[i];
        if(i!=k-1) cout<<" ";
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值