《数据结构》学习笔记——时间复杂度

1.大O表示法

算法复杂度可以从最理想情况平均情况最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。 大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。

推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法: 

1.用常数1来取代运行时间中所有加法常数。 

2.修改后的运行次数函数中,只保留最高阶项 

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

常数阶 

  int sum = 0,n = 100; //执行一次  
  sum = (1+n)*n/2; //执行一次  
  System.out.println (sum); //执行一次 

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。

线性阶 
线性阶主要要分析循环结构的运行情况,如下所示。

for(int i=0;i<n;i++){
//时间复杂度为O(1)的算法
...
}

上面算法循环体中的代码执行了n次,因此时间复杂度为O(n)。

对数阶 

int number=1;
while(number<n){
number=number*2;
//时间复杂度为O(1)的算法
...
}

可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。

平方阶 
下面的代码是循环嵌套:

  for(int i=0;i<n;i++){   
      for(int j=0;j<n;i++){
         //复杂度为O(1)的算法
         ... 
      }
  }

内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为O(n²)。 

接下来我们来算一下下面算法的时间复杂度:

  for(int i=0;i<n;i++){   
      for(int j=i;j<n;i++){
         //复杂度为O(1)的算法
         ... 
      }
  }

需要注意的是内循环中int j=i,而不是int j=0。当i=0时,内循环执行了n次;i=1时内循环执行了n-1次,当i=n-1时执行了1次,我们可以推算出总的执行次数为:

n+(n-1)+(n-2)+(n-3)+……+1 
=(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+…… 
=(n+1)+(n+1)+(n+1)+(n+1)+…… 
=(n+1)n/2 
=n(n+1)/2 
=n²/2+n/2

根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留n²/2。根据第三条去掉和这个项的常数,则去掉1/2,最终这段代码的时间复杂度为O(n²)。

其他常见复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度: 
f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。 
f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。 
f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。 
f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。 
f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。

2.复杂度的比较

下面将算法中常见的f(n)值根据几种典型的数量级来列成一张表,根据这种表,我们来看看各种算法复杂度的差异。

nlogn√nnlogn2ⁿn!
522102532120
10333010010243628800
50572502500约10^15约3.0*10^64
10061060010000约10^30约9.3*10^157
100093190001000 000约10^300约4.0*10^2567

从上表可以看出,O(n)、O(logn)、O(√n )、O(nlogn )随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观O(2ⁿ)和O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中,因此在动手编程时要评估所写算法的最坏情况的复杂度

面给出一个更加直观的图: 

这里写图片描述

其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出O(n!)和O(2ⁿ)随着n值的增大,它们的T(n)值上升幅度非常大,而O(logn)、O(n)、O(nlogn)随着n值的增大,T(n)值上升幅度则很小。 
常用的时间复杂度按照耗费的时间从小到大依次是:

O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)

3.常用的时间复杂度举例

名称复杂度类运行时间(T(n)运行时间举例算法举例
常数时间 O(1)10判断一个二进制数的奇偶
阿克曼时间 O(\alpha(n)) 并查集的单个操作的平摊时间
迭代对数时间 O(\log^{*}n) en:Cole-Vishkin algorithm
对数对数时间 O(\log \log n) 有界优先队列的单个操作[1]
对数时间DLOGTIMEO(\log n)\log n\log n^2二分搜索
幂对数时间 (\log n)^{O(1)}(\log n)^2 
(小于1次)幂时间 O(n^c),其中0 < c < 1n^{\frac{1}{2}}n^{\frac{2}{3}}K-d树的搜索操作
线性时间 O(n)n无序数组的搜索
线性迭代对数时间 O(n\log^{*}n) Raimund Seidel三角分割多边形算法
线性对数时间 O(n\log n)n\log n\log n!最快的比较排序
二次时间 O(n^2)n^2冒泡排序插入排序
三次时间 O(n^3)n^3矩阵乘法的基本实现,计算部分相关性
多项式时间P2^{O(\log n)} = n^{O(1)}nn \log nn^{10}线性规划中的en:Karmarkar's algorithmAKS质数测试
准多项式时间QP2^{(\log n)^{O(1)}} 关于有向斯坦纳树问题最著名的O(\log^2 n)近似算法
次指数时间(第一定义)SUBEXPO(2^{n^{\epsilon}}),对任意的ε > 0O(2^{(\log n)^{\log \log n}})Assuming complexity theoretic conjectures, BPP is contained in SUBEXP.[2]
次指数时间(第二定义) 2o(n2n1/3Best-known algorithm for integer factorization and graph isomorphism
指数时间E2O(n)1.1n, 10n使用动态规划解决旅行推销员问题
阶乘时间 O(n!)n!通过暴力搜索解决旅行推销员问题
指数时间EXPTIME2poly(n)2n, 2n2 
双重指数时间2-EXPTIME22poly(n)22nDeciding the truth of a given statement in Presburger arithmetic



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值