非典型废言
码龄8年
关注
提问 私信
  • 博客:1,094,828
    社区:53
    问答:3,602
    1,098,483
    总访问量
  • 152
    原创
  • 27,246
    排名
  • 971
    粉丝
  • 5
    铁粉

个人简介:苯环碳碳键键能能否否定定论一

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2016-08-08
博客简介:

学如不及,犹恐失之

博客描述:
比来比去比卡丘
查看详细资料
  • 原力等级
    当前等级
    6
    当前总分
    2,101
    当月
    9
个人成就
  • 博客专家认证
  • 获得802次点赞
  • 内容获得465次评论
  • 获得3,736次收藏
  • 代码片获得3,008次分享
创作历程
  • 4篇
    2024年
  • 6篇
    2023年
  • 13篇
    2022年
  • 16篇
    2021年
  • 26篇
    2020年
  • 38篇
    2019年
  • 32篇
    2018年
  • 17篇
    2017年
成就勋章
TA的专栏
  • 语音信号处理
    付费
    54篇
  • Python
    付费
    12篇
  • ----------语音信号处理----------
  • ----------深度学习----------
    2篇
  • 从零开始搭建神经网络
    5篇
  • Pytorch
    2篇
  • TensorFlow
    10篇
  • 论文笔记
    1篇
  • ----------机器学习----------
  • 从零实现机器学习算法
    19篇
  • 机器学习
    7篇
  • ----------编程语言----------
  • C++
    8篇
  • C
    14篇
  • Matlab
    3篇
  • ----------编程算法----------
  • 算法导论
    4篇
  • LeetCode
    2篇
  • ----------计算机基础-----------
  • linux
    8篇
  • 环境配置
    9篇
  • 基础知识
    13篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习pytorch
More
语音信号处理交流群:  652292630   
Github: https://github.com/Ryuk17
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

word不用公式打出x bar/hat等特殊符号

打开Word文档。 按下Win + R打开运行对话框,输入charmap并回车,打开字符映射表。 在字符映射表中,选择“所有Unicode子范围(含隐藏)”。 在搜索框中输入“x”或者直接滚动查找,找到带帽子的X符号(通常在数学符号范围内)。 选中这个符号,点击“选择”按钮,然后点击“复制”。 返回Word文档,使用Ctrl + V粘贴这个符号
原创
发布博客 2024.08.18 ·
2722 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

瞬态噪声抑制算法流程解析

在语音增强领域,噪声通常可以分为稳态噪声(例如白噪声)和瞬态噪声(也称为非稳态噪声,如键盘声)。对于熟悉语音降噪的读者来说,通常的信号处理方法对稳态噪声有较好的效果,具体可以参考。然而,对于瞬态噪声,由于噪声变化迅速,传统的噪声估计算法难以准确跟踪,因此通常采用基于深度学习的方法来抑制瞬态噪声,参考。那么,是否可以使用信号处理方法来抑制瞬态噪声呢?答案是肯定的。为了不卖关子,先给大家展示一下信号处理方法在抑制瞬态噪声方面的实际效果,这或许会让你对信号处理的能力刮目相看瞬态噪声的抑制流程图如下所示。
原创
发布博客 2024.08.11 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

WebRTC AEC中的舒适噪声算法

在回声消除技术中,舒适噪声生成(Comfort Noise Generator, CNG)算法是一种常用方法,用于减轻回声消除过程中带来的不适感和声音失真。CNG通过添加特定的噪声信号,模拟人耳的听觉特性,提升声音的自然度和舒适度。CNG算法的基本原理是将噪声信号与回声消除处理后的信号混合,使得混合信号在听觉上更加自然和舒适。其步骤如下:首先进行背景噪声估计,然后根据估计的背景噪声功率生成随机噪声,最后对生成的噪声进行加权处理。
原创
发布博客 2024.07.07 ·
246 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

yolo-world官方训练log

发布资源 2024.05.23 ·
zip

LPC/LSP/LSF辨析

如下图所示,我们在20ms的语音频谱上绘制LSF(奇数用实线表示,偶数虚数表示)显而易见频谱中的峰值往往被狭窄的LSP夹在中间,但频谱中的局部极小值往往没有LSP在其周围。LPC模型可以视为一个全极点共振模型,它对信号的频谱包络进行建模,将信号的频谱包络表示为一系列极点,每个极点对应于信号的谐振频率。LSP具有良好的量化特性和高效性的表达性,因此在语音编码中被广泛运用。接着我们定义两个与A(z)相关的p+1阶的多项式P(z)和Q(z),这两个多项式表示人类声道的互连管模型,A(z)是它们的线性组合。
原创
发布博客 2024.02.19 ·
546 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

onnx-modifier

发布资源 2023.11.20 ·
exe

G.711语音编解码器详解

ADC 芯片的速度和精度指标是相互折中的。对应于不同的应用场景,ADC 芯片有着不同的设计架构,音频中常用的是Σ-Δ型,这里我们就不再展开了。波形编码的算法有很多种,常见的波形编码方式是脉冲编码调制(Pulse Code Modulation, PCM),其原理如下图所示,正弦波信号被均匀采样,对于每一个采样点用与其幅值最接近的值当做它编码后的值。值得注意的是,本文说的是语音编解码器,也就Speech codec,而常用的还有另一种编解码器称作音频编解码器,英文是Audio codec,它们的区别如下。
原创
发布博客 2023.10.15 ·
1052 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

如何生成丰富的啸叫样本?

用t表示离散时间索引,q表示离散时间时移操作,其中v(t)表示麦克风采集的源信号;在上述条件下,如果系统中的某个频率被激发,导致系统不稳定产生振荡,就会以啸叫的形式表现,啸叫通常出现在大约 200 到 5000 Hz 并且具有类似于单个正弦分量的非常窄带的特征,因为通常只有一个单个频率是不稳定。这里我们使用了两个不同的IR(IR的数据集有很多网上一搜一大把),由于啸叫的声音比较刺耳,这里就不放音频了,产生啸叫的频谱如下所示,可以看到第一个音频单频点发生啸叫,而第二个音频在多个倍频发生了啸叫。
原创
发布博客 2023.07.30 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【AI 孙燕姿】歌声转换技术原理浅析

SVCC2023的比赛分为两个赛道,分别是域内的歌声转换和跨域的歌声转换,但遗憾的是目前已经结束提交了,将在6月份公布结果,并在7月份提交workshop论文,举办方也在积极推进workshop的举办,计划在8~9月份举行。总的来说,SoVITS在VITS的基础上,将解码器改为NSF-HiFiGAN,输入改为ContentVec,在推理时对ContentVec预测和pitch decoder的输出进行聚类,以减少输入语音泄漏,并在原始网络之前增加了Conv1d。
原创
发布博客 2023.05.23 ·
2065 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

AI降噪的N种数据扩增方法

但这种方式针对规律的稳态噪声比较有效,如空调声,吸尘器的声音等,而针对突发噪声,如撞击声,键盘声,关门声等等效果往往不如人意。首先使用最多的就是让纯净语音和带噪语音按照不同信噪比进行混合,这样就可以得到丰富的带噪语音,一般采用随机数生成随机的信噪比,信噪比的范围可以根据自己的使用场景进行设定。不同设备的增益不同,不同距离的说话人声音大小不同,为了模拟这种情况,可以使用阶梯状的增益对语音信号进行处理。为了模拟不同的使用场景,可以通过RIR去模拟不同的房间对应的不同的混响时间。
原创
发布博客 2023.04.05 ·
463 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

arm32/aarch64 toolchian

发布资源 2023.04.05 ·
7z

都什么年代了,还在做传统波束成形

答案当然是肯定的,大名鼎鼎的NTT(日本电报电话公司,Nippon Telegraph & Telephone)提出了通过复高斯混合模型估计时频掩码和导向矢量,结合常用的MVDR(最小均方无畸变响应,Minimum Variance Distortionless Response)算法,在CHiME-3数据集上让ASR的WER下降了7个点。公式(6)的权重计算需要知道噪声的协方差矩阵,但有时无法估计出噪声的协方差矩阵,直接使用接受数据的协方差矩阵进行计算,即。此时,目标语音可以表示为。是噪声的协方差矩阵。
原创
发布博客 2023.03.26 ·
704 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

Transcriber.7z

发布资源 2023.02.28 ·
7z

P-DukeMTMC-reID.zip

发布资源 2023.02.27 ·
zip

行人检测数据集PET.zip

发布资源 2023.02.27 ·
zip

unbalanced-train-segments.csv

发布资源 2023.02.27 ·
csv

突破压缩极限的AI语音编解码器

语音编码的目的是在保持语音质量的前提下尽可能地减少传输所用的带宽,主要是利用人的发声过程中存在的冗余度和人的听觉特性达到压缩的目的。经过了多年的发展,目前语音编解码器大致可以分为以下几类:
原创
发布博客 2023.02.14 ·
746 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

语音相似度评价

语音相似度评价是用于测量语音之间的相似程度,常使用的算法是动态时间规整(Dynamic time warping,DTW),其原理是通过对齐时间序列来评估它们之间相似性。DTW是一种基于对齐的度量(alignment-based metric)与常见的欧式距离不同,DTW考虑到了时间维度上的信息,因此常用在信号处理领域,比如说话人识别,语音识别等。​下面举个例子解释为什么要用DTW而不是欧式距离,这里我们有一个时间序列的数据集,包含了一些不同的样式。
原创
发布博客 2022.11.13 ·
1640 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

不使用FFT计算频段能量

当我们想计算某个频段能量时,FFT一般是首选项。但是当我们并不关注所有的频段,仅仅关注某一个频段,FFT较大的计算量使得其并不是一个较好的选择,那么有没有不用FFT就可以计算频段能量的方法呢?答案当然是肯定的,这就是我们今天要介绍的。
原创
发布博客 2022.10.10 ·
670 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

基于音频指纹的听歌识曲系统

听歌识曲,我想大家都不陌生。虽然不同的厂商识别率不同(可能是因为版权的原因),但是每个音乐APP都会有这么一个功能。我们以扣扣音乐为例,扣扣音乐听歌识曲功能比较丰富,不仅有基本的听歌识曲还有哼唱识别,识别到对应的歌曲后就直接返回对应的结果,如下图所示。这里我们只关注听歌识曲部分,这一功能通常使用音频指纹(Audio Fingerprinting)实现。其主要流程大致可以分为两步:1)离线的音频指纹提取;2)在线的音频指纹匹配。...
原创
发布博客 2022.08.15 ·
1822 阅读 ·
0 点赞 ·
1 评论 ·
11 收藏
加载更多