ctfIDF实验室古老的邮件编码问题

本文探讨了古老的邮件编码问题,重点聚焦于UUencode。UUencode是一种早期在Unix邮件系统中使用的二进制到文字编码方式,用于将二进制数据转化为可打印字符。它将每个3字节的数据分成4个6位组,并转换为32-95之间的ASCII字符,以确保可打印性。虽然与Base64相似,但UUencode有其独特的转码规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

古老的邮件编码


MR,O)^KNYU>;*Q[*[P_?#Q+"AHZS6Q\G,LKNYNZ.LR;;2LK*[N^&CK+/VN/;,

MXK:\TJJ]RKZAQ-36K:&CH:,*M/.XQ;3PL+B^S<K'U>+1^;#)=V-T9GMU=75U

*=65N8V]D95]??0``


一看邮件编码问题,我就想到了UUencode。

UUencode是一种二进制到文字的编码!它不是MIME编码中一员。最早在unix 邮件系统中使用,全称:Unix-to-Unix encoding。它也是定义了用可打印字符表示二进制文字一种方法,并不是一种新的编码集合。Uuencod

这是第一段代码,关于bertopic主题建模“# 加载原始文本数据(仍需用于主题表示) df = pd.read_csv(‘tokenized_abstract.csv’, encoding=‘utf-8’) sentences = df[‘Abstract’].tolist() print('文本条数: ', len(sentences)) print('预览第一条: ', sentences[0]) 检查缺失值 print(“缺失值数量:”, df[‘Abstract’].isna().sum()) 检查非字符串类型 non_str_mask = df[‘Abstract’].apply(lambda x: not isinstance(x, str)) print(“非字符串样本:\n”, df[non_str_mask][‘Abstract’].head()) vectorizer_model = Nonefrom sentence_transformers import SentenceTransformer Step 1 - Extract embeddings embedding_model = SentenceTransformer(“C:\Users\18267\.cache\huggingface\hub\models–sentence-transformers–all-mpnet-base-v2\snapshots\9a3225965996d404b775526de6dbfe85d3368642”) embeddings = np.load(‘clean_emb_last.npy’) print(f"嵌入的形状: {embeddings.shape}") Step 2 - Reduce dimensionality umap_model = UMAP(n_neighbors=7, n_components=10, min_dist=0.0, metric=‘cosine’,random_state=42) Step 3 - Cluster reduced embeddings hdbscan_model = HDBSCAN(min_samples=7, min_cluster_size=60,metric=‘euclidean’, cluster_selection_method=‘eom’, prediction_data=True) Step 4 - Tokenize topics Combine custom stop words with scikit-learn’s English stop words custom_stop_words = [‘h2’, ‘storing’, ‘storage’, ‘include’, ‘comprise’, ‘utility’, ‘model’, ‘disclosed’, ‘embodiment’, ‘invention’, ‘prior’, ‘art’, ‘according’, ‘present’, ‘method’, ‘system’, ‘device’, ‘may’, ‘also’, ‘use’, ‘used’, ‘provide’, ‘wherein’, ‘configured’, ‘predetermined’, ‘plurality’, ‘comprising’, ‘consists’, ‘following’, ‘characterized’, ‘claim’, ‘claims’, ‘said’, ‘first’, ‘second’, ‘third’, ‘fourth’, ‘fifth’, ‘one’, ‘two’, ‘three’,‘hydrogen’] Create combined stop words set all_stop_words = set(custom_stop_words).union(ENGLISH_STOP_WORDS) vectorizer_model = CountVectorizer(stop_words=list(all_stop_words)) Step 5 - Create topic representation ctfidf_model = ClassTfidfTransformer() All steps together topic_model = BERTopic( embedding_model=embedding_model, # Step 1 - Extract embeddings umap_model=umap_model, # Step 2 - Reduce dimensionality hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics ctfidf_model=ctfidf_model, # Step 5 - Extract topic words top_n_words=50 )# 拟合模型 topics, probs = topic_model.fit_transform(documents=sentences, # 仍需提供文档用于主题词生成 embeddings=embeddings # 注入预计算嵌入) ) 获取主题聚类信息 topic_info = topic_model.get_topic_info() print(topic_info)”
最新发布
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值