php实现二叉树——构造

基本概念

一、定义:二叉树是结点的有限集合,可以为空集,或者由一个根和两个互不相交的、称为该根左子树和右子树的二叉树组成。

二、性质

  • 二叉树的第i(i≥1)层上之多有2^(i-1)个结点
  • 高度为h的二叉树上至多有2^h-1个结点,高度恰好为2^h-1
    时为满二叉树
  • 完全二叉树:只有最下面两层结点的度可以小于2,且最下面一层的结点集中在靠左的位置上
  • 扩充二叉树又叫2-树,除叶子结点外其余结点都必须有两个孩子

构造二叉树

定义二叉树的结点类:

class TreeNode{         //树节点类
    var $val;
    var $left = NULL;
    var $right = NULL;
    function __construct($val){
        $this->val = $val;
    }
    //构造二叉树
    function createBinaryTree(TreeNode $lchird = NULL, TreeNode $rchird = NULL){
        if(!is_null($lchird))
            $this->left = $lchird;
        if(!is_null($rchird))
            $this->right = $rchird;
    }
}

$d = new TreeNode('D');
$e = new TreeNode('E');
$f = new TreeNode('F');
$c = new TreeNode('C');
$b = new TreeNode('B');
$a = new TreeNode('A');
$a->createBinaryTree($b,$c);
$b->createBinaryTree($d,$e);
$c->createBinaryTree(NULL,$f);

构造的过程比较简单,也可以不用函数实现,将左右子树的根结点赋值给根结点对象left和right属性即可,上述过程也可以写成:

$c->right = $f;
$b->left = $d;
$b->right = $e;
$a->left = $b;
$a->right = $c;

构造结果为:
这里写图片描述

  • 二叉树存在左子树为空或右子树为空的情况,因php不能进行函数重载,故用默认参数的方式实现,在调用函数的时候,如果右子树为空,可以让右子树的参数缺省,但如果左子树为空,则需要传递参数NULL。

没有更多推荐了,返回首页