tensorflow tf.placeholder函数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_36458870/article/details/79956208

先看看基本函数:

tf.placeholder(dtype, shape=None, name=None)

它的第一个参数是你要保存的数据的数据类型,大多数是tensorflow中的float32数据类型

dtype:数据类型,常用的是tf.float32,tf.float64等数值类型
shape:数据形状,默认是None(一维值),可以是多维数据:比如[3,4], [None, 4]:行不定,列是4.
name:名称

使用时,和前面的variable不同的是:在session阶段,需要给placeholder提供数据,利用feed_dict的字典结构给placeholdr变量“喂数据”,具体使用如下:

可以理解为形参,用于定义过程,在执行的时候再赋具体的值

这里是官方文档:

x = tf.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)

with tf.Session() as sess:
  print(sess.run(y))  # ERROR: will fail because x was not fed.

  rand_array = np.random.rand(1024, 1024)
  print(sess.run(y, feed_dict={x: rand_array}))  # Will succeed.
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页