答案
Longformer
Longformer是为有效处理长文本序列而设计的Transformer模型,它通过结合滑动窗口注意力机制和扩张注意力模式来捕捉局部和远距离的上下文信息,并通过全局注意力来捕捉整个文档的广泛背景和联系1.Key innovations:
- 滑动窗口注意力 Longformer 使用滑动窗口方法处理本地上下文信息1.
- 扩张注意力模式 扩张注意力模式能够捕捉到远处的上下文信息,这对于处理冗长的文档非常有用1.
- 全局注意力 Longformer 采用全局注意力来捕获整个文档的上下文信息,这种局部和全局注意力的混合模式使得它能够处理具有不同上下文需求的序列1.
- 效率 Longformer 的设计大大降低了计算成本,使其能够处理更长的输入,适用于需要大量上下文信息的场景1.
Applications:
- 文本摘要 Longformer 可以有效地捕捉和浓缩法律或科学论文等长篇文档中的重要信息1.
- 问题解答系统 Longformer 在必须从冗长文本中得出答案的问题解答系统中表现出色, 对于需要大量阅读理解的应用(如法律或研究文件处理)至关重要1.
- 情感分析 对整本书或长篇评论进行情感分析,可以更深入地了解整体情感,而不是只关注短小的摘录1.
BigBird
BigBird 是一种新型模型,它使用块稀疏注意力来处理长序列数据,与传统的 BERT 模型相比,计算成本更低6. BigBird 通过稀疏注意力机制处理长达 4096 的序列,是 BERT 可能处理的序列长度的 8 倍26.Key innovations:
- 稀疏注意力机制 BigBird 使用稀疏注意力机制,使其能够处理比以前长 8 倍的序列,且使用的硬件配置与 BERT 相同2. BigBird 的稀疏注意力机制是逐个令牌应用的,而不是像 BERT 那样只对整个输入进行一次应用2.
- 块稀疏注意力 BigBird 将输入序列分成若干个块,然后对每个块独立地计算注意力权重。这样,模型只需要计算每个块的注意力,从而大大降低了计算量6.
- 全局内存 BigBird 具有独特的“内部变压器构造(ITC)”,即全局内存已扩展为在序列中包含 token,而不是简单的参数化内存48.
Applications:
- 长文本摘要 BigBird 能够以较低的计算成本提取关键信息并生成摘要6.
- 长上下文问答 BigBird 可以在各种任务上实现 SOTA 性能,例如长文档摘要、长上下文问答等6.
- 文本分类 通过将输入序列分成若干个块,BigBird 可以更有效地处理长序列数据,提高模型的性能和泛化能力,适用于文本分类、情感分析、命名实体识别等任务6.
答案
BERT (Bidirectional Encoder Representations from Transformers) 是由 Google 提出的一种用于自然语言处理 (NLP) 的预训练模型1。它基于 Transformer 架构,通过双向训练 Transformer 的编码器部分,能够捕捉文本中词语的上下文信息,是 NLP 领域的一个里程碑13.基本原理:
- Transformer 架构 BERT 基于 Transformer 架构,但只使用编码器部分1. 编码器的主要组成部分包括:
- 预训练与微调 BERT 的训练分为两步1:
- 上下文理解 BERT 的基本理念是基于上下文理解文本3。传统的 NLP 模型通常采用词袋模型或 word embeddings 来表示文本,但这些方法忽略了词与词之间的关系。而 BERT 通过捕捉词与词之间的内在关系来理解文本的上下文3。
- 双向编码 BERT 通过将句子嵌入到上下文中的方式解决了传统自然语言处理模型中输入被限制在一定长度的句子内的问题2。使用 Transformer 架构,BERT 可以接受一个由多个句子组成的段落作为输入,并使用自注意力机制来关注与当前单词或短语相关的信息2。这允许 BERT 理解更长的上下文,从而更好地处理长文本2。
上下文限制:BERT 模型有输入长度的限制,通常为 512 个 token48。这个限制源于 BERT 模型的位置向量采用绝对位置向量,并通过训练得到,在模型训练时,只训练了 512 个位置向量4。当文本长度超过 512 时,可以采取以下策略8:
- 截断 将文本截断到 512 个 token。
- 滑动窗口 使用滑动窗口将文本分成多个片段,每个片段包含 512 个 token。
- 模型改进 改进 BERT 模型,使其能够处理更长的文本。
总的来说,BERT 通过 Transformer 架构和预训练方法相结合,能够有效地处理长文本问题2。通过应用模型调优、数据增强、序列填充和自适应训练等技术,可以进一步提高 BERT 的性能2。
为什么说bert是仅编码器架构,还有类似的encoder only的架构有哪些,和decoder only的区别和联系是哪些
BERT是仅编码器架构(Encoder-Only)的原因及其与其他架构的区别和联系如下:
BERT是仅编码器架构的原因
BERT(Bidirectional Encoder Representations from Transformers)是基于Transformer架构的编码器部分构建的。其设计目标是通过编码器对输入文本进行深度语义编码,从而提取丰富的上下文信息,适用于自然语言理解(NLU)任务,如文本分类、情感分析、命名实体识别等。BERT通过掩码语言模型(MLM)和下一句预测(NSP)等预训练任务,能够学习到双向上下文信息,这使得它在理解任务中表现出色。
类似的Encoder-Only架构
除了BERT之外,还有其他一些仅编码器架构的模型,例如:
-
RoBERTa:对BERT的改进版本,通过更大的训练数据集和优化的训练策略,进一步提升了模型性能。
-
ALBERT:通过参数共享和优化的训练方法,在保持BERT性能的同时减少了模型参数。
-
GLM-4:智谱AI发布的第四代基座大语言模型,其在某些中文任务上表现出色。
Encoder-Only架构与Decoder-Only架构的区别
特点 | Encoder-Only架构 | Decoder-Only架构 |
---|---|---|
核心组件 | 仅包含编码器 | 仅包含解码器 |
任务类型 | 主要用于理解任务,如文本分类、情感分析 | 主要用于生成任务,如文本生成、对话生成 |
上下文处理 | 双向上下文,能够同时考虑前后文 | 单向上下文,通常从左到右生成文本 |
代表模型 | BERT、RoBERTa、ALBERT | GPT系列、LLaMA、OPT |
优点 | 深入理解文本语义,适合分类和分析任务 | 生成连贯的文本,适合创造性写作 |
局限 | 无法直接生成文本输出 | 对输入文本的编码能力较弱 |
Encoder-Only架构与Decoder-Only架构的联系
-
基础架构:两者都基于Transformer架构,但分别使用了Transformer的编码器部分和解码器部分。
-
预训练任务:BERT和GPT系列都采用了无监督预训练的方式,通过大量的文本数据学习语言模式。BERT通过MLM和NSP任务进行预训练,而GPT系列则通过预测下一个词的任务进行预训练。
-
应用场景:虽然两者在任务类型上有所不同,但在实际应用中可以结合使用。例如,在问答系统中,可以先使用BERT对问题进行编码,然后使用GPT生成回答。
总的来说,BERT作为典型的Encoder-Only架构,专注于对输入文本的理解和分析,而Decoder-Only架构则更擅长生成任务。两者在自然语言处理的不同领域各有优势,可以根据具体任务需求选择合适的架构。
答案
BERT (Bidirectional Encoder Representations from Transformers) 是一种用于自然语言处理 (NLP) 的预训练模型,其核心在于利用 Transformer 架构的编码器部分来学习文本数据的深层次双向表示8。BERT 能够同时理解给定单词、句子或文档左右两侧的上下文1。BERT 的基本原理:
- Transformer 架构 BERT 基于 Transformer 架构,但仅使用编码器部分123. 编码器由多头自注意力机制和前馈神经网络组成23. 自注意力机制允许模型在处理序列时关注不同位置的 token,并计算 token 之间的注意力权重,从而捕捉输入序列中的依赖关系2.
- 双向编码 BERT 采用双向编码器来处理输入文本,并通过 Transformer 学习词元间的关系1. 这种结构可以使用上下文来预测被掩盖的 token,从而捕捉双向关系4。
- 预训练任务 BERT 通过在大规模未标注数据上执行预训练任务(如 Masked Language Model)来捕获文本中词汇的双向上下文关系,以及 Next Sentence Prediction 来理解句子间的逻辑关系2。
仅编码器 (Encoder-only) 架构BERT 是一种仅编码器的 Transformer 模型123。编码器接收一系列词元作为输入,并输出词元的向量表示形式的隐藏状态1。其他类似的 encoder only 的架构有:
- ALBERT
- RoBERTa
- ELECTRA
与仅解码器 (Decoder-only) 架构的区别和联系BERT 与 GPT 等纯解码器模型形成鲜明对比,GPT 的目标是一次预测一个新词,以生成新的输出序列,每个预测的单词只能利用前面的单词(左语境)提供的语境,因为后面的单词(右语境)还尚未生成,这种模型也被称为单向模型3。