ACM算法模板

转自:http://blog.csdn.net/qq_32265245/article/details/53046750

0.头文件

#define _CRT_SBCURE_NO_DEPRECATE
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
#include <iomanip>
#define pi acos(-1.0)
#define exp 1e-6
#define mod 1000000007
using namespace std;

const int maxn = 110;
const int INF = 0x3f3f3f3f;
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

经典

1.埃拉托斯特尼筛法

/*
    |埃式筛法|
    |快速筛选素数|
    |16/11/05ztx|
*/

int prime[maxn];  
bool is_prime[maxn];

int sieve(int n){
    int p = 0;
    for(int i = 0; i <= n; ++i)
        is_prime[i] = true;
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i <= n; ++i){   //  注意数组大小是n
        if(is_prime[i]){
            prime[p++] = i;
            for(int j = i + i; j <= n; j += i)  //  轻剪枝,j必定是i的倍数
                is_prime[j] = false;
        }
    }
    return p;   //  返回素数个数
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

2.快速幂

/*
    |快速幂|
    |16/11/05ztx|
*/

typedef long long LL;   //  视数据大小的情况而定

LL powerMod(LL x, LL n, LL m)
{
    LL res = 1;
    while (n > 0){
        if  (n & 1) //  判断是否为奇数,若是则true
            res = (res * x) % m;
        x = (x * x) % m;
        n >>= 1;    //  相当于n /= 2;
    }
    return res;
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

3.大数模拟

大数加法

/*
    |大数模拟加法|
    |用string模拟|
    |16/11/05ztx, thanks to caojiji|
*/

string add1(string s1, string s2)
{
    if (s1 == "" && s2 == "")   return "0";
    if (s1 == "")   return s2;
    if (s2 == "")   return s1;
    string maxx = s1, minn = s2;
    if (s1.length() < s2.length()){
        maxx = s2;
        minn = s1;
    }
    int a = maxx.length() - 1, b = minn.length() - 1;
    for (int i = b; i >= 0; --i){
        maxx[a--] += minn[i] - '0'; //  a一直在减 , 额外还要减个'0'
    }
    for (int i = maxx.length()-1; i > 0;--i){
        if (maxx[i] > '9'){
            maxx[i] -= 10;//注意这个是减10
            maxx[i - 1]++;
        }
    }
    if (maxx[0] > '9'){
        maxx[0] -= 10;
        maxx = '1' + maxx;
    }
    return maxx;
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

大数阶乘

/*
    |大数模拟阶乘|
    |用数组模拟|
    |16/12/02ztx|
*/

#include <iostream>
#include <cstdio>

using namespace std;

typedef long long LL;

const int maxn = 100010;

int num[maxn], len;

/*
    在mult函数中,形参部分:len每次调用函数都会发生改变,n表示每次要乘以的数,最终返回的是结果的长度
    tip: 阶乘都是先求之前的(n-1)!来求n!
    初始化Init函数很重要,不要落下
*/

void Init() {
    len = 1;
    num[0] = 1;
}

int mult(int num[], int len, int n) {
    LL tmp = 0;
    for(LL i = 0; i < len; ++i) {
         tmp = tmp + num[i] * n;    //从最低位开始,等号左边的tmp表示当前位,右边的tmp表示进位(之前进的位)
         num[i] = tmp % 10; //  保存在对应的数组位置,即去掉进位后的一位数
         tmp = tmp / 10;    //  取整用于再次循环,与n和下一个位置的乘积相加
    }
    while(tmp) {    //  之后的进位处理
         num[len++] = tmp % 10;
         tmp = tmp / 10;
    }
    return len;
}

int main() {
    Init();
    int n;
    n = 1977; // 求的阶乘数
    for(int i = 2; i <= n; ++i) {
        len = mult(num, len, i);
    }
    for(int i = len - 1; i >= 0; --i)
        printf("%d",num[i]);    //  从最高位依次输出,数据比较多采用printf输出
    printf("\n");
    return 0;
}

  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

4.GCD

/*
    |辗转相除法|
    |欧几里得算法|
    |求最大公约数|
    |16/11/05ztx|
*/

int gcd(int big, int small)
{
    if (small > big) swap(big, small);
    int temp;
    while (small != 0){ //  辗转相除法
        if (small > big) swap(big, small);
        temp = big % small;
        big = small;
        small = temp;
    }
    return(big);
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

5.LCM

/*
    |辗转相除法|
    |欧几里得算法|
    |求最小公倍数|
    |16/11/05ztx|
*/

int gcd(int big, int small)
{
    if (small > big) swap(big, small);
    int temp;
    while (small != 0){ //  辗转相除法
        if (small > big) swap(big, small);
        temp = big % small;
        big = small;
        small = temp;
    }
    return(big);
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

6.全排列

/*
    |求1到n的全排列, 有条件|
    |16/11/05ztx, thanks to wangqiqi|
*/

void Pern(int list[], int k, int n) {   //  k表示前k个数不动仅移动后面n-k位数
    if (k == n - 1) {
        for (int i = 0; i < n; i++) {
            printf("%d", list[i]);
        }
        printf("\n");
    }else {
        for (int i = k; i < n; i++) {   //  输出的是满足移动条件所有全排列
            swap(list[k], list[i]);
            Pern(list, k + 1, n);
            swap(list[k], list[i]);
        }
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

7.二分搜索

/*
    |二分搜索|
    |要求:先排序|
    |16/11/05ztx, thanks to wangxiaocai|
*/

//  left为最开始元素, right是末尾元素的下一个数,x是要找的数
int bsearch(int *A, int left, int right, int x){
    int m;
    while (left < right){
        m = left + (right - left) / 2;
        if (A[m] >= x)  right = m;   else left = m + 1;    
        // 如果要替换为 upper_bound, 改为:if (A[m] <= v) x = m+1; else y = m;     
    }
    return left;
}

/*
    最后left == right  

    如果没有找到1355776,返回7  

    如果找有多少的x,可以用lower_bound查找一遍,upper_bound查找一遍,下标相减  

    C++自带的lower_bound(a,a+n,x)返回数组中最后一个x的下一个数的地址 

    upper_bound(a,a+n,x)返回数组中第一个x的地址

    如果a+n内没有找到x或x的下一个地址,返回a+n的地址  

    lower_bound(a,a+n,x)-upper_bound(a,a+n,x)返回数组中x的个数
*/ 
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

数据结构

并查集

8.并查集

/*
    |合并节点操作|
    |16/11/05ztx, thanks to chaixiaojun|
*/

int father[maxn];   //  储存i的father父节点  

void makeSet() {  
    for (int i = 0; i < maxn; i++)   
        father[i] = i;  
}  

int findRoot(int x) {   //  迭代找根节点
    int root = x; // 根节点  
    while (root != father[root]) { // 寻找根节点  
        root = father[root];  
    }  
    while (x != root) {  
        int tmp = father[x];  
        father[x] = root; // 根节点赋值  
        x = tmp;  
    }  
    return root;  
}  

void Union(int x, int y) {  //  将x所在的集合和y所在的集合整合起来形成一个集合。  
    int a, b;  
    a = findRoot(x);  
    b = findRoot(y);  
    father[a] = b;  // y连在x的根节点上   或father[b] = a为x连在y的根节点上;  
}  

/*
    在findRoot(x)中:
    路径压缩 迭代 最优版
    关键在于在路径上的每个节点都可以直接连接到根上
*/
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

图论

MST

最小生成树

Kruskal

9.克鲁斯卡尔算法

/*
    |Kruskal算法|
    |适用于 稀疏图 求最小生成树|
    |16/11/05ztx thanks to wangqiqi|
*/

/*
    第一步:点、边、加入vector,把所有边按从小到大排序
    第二步:并查集部分 + 下面的code
*/

void Kruskal() {    
    ans = 0;    
    for (int i = 0; i<len; i++) {    
        if (Find(edge[i].a) != Find(edge[i].b)) {    
            Union(edge[i].a, edge[i].b);    
            ans += edge[i].len;    
        }    
    }    
}    
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
Prim

10.普里姆算法

/*
    |Prim算法|
    |适用于 稠密图 求最小生成树|
    |堆优化版,时间复杂度:O(elgn)|
    |16/11/05ztx, thanks to chaixiaojun|
*/

struct node {  
    int v, len;  
    node(int v = 0, int len = 0) :v(v), len(len) {}  
    bool operator < (const node &a)const {  // 加入队列的元素自动按距离从小到大排序  
        return len> a.len;  
    }  
};

vector<node> G[maxn];
int vis[maxn];
int dis[maxn];

void init() {  
    for (int i = 0; i<maxn; i++) {  
        G[i].clear();  
        dis[i] = INF;  
        vis[i] = false;  
    }  
}  
int Prim(int s) {  
    priority_queue<node>Q; // 定义优先队列  
    int ans = 0;  
    Q.push(node(s,0));  // 起点加入队列  
    while (!Q.empty()) {   
        node now = Q.top(); Q.pop();  // 取出距离最小的点  
        int v = now.v;  
        if (vis[v]) continue;  // 同一个节点,可能会推入2次或2次以上队列,这样第一个被标记后,剩下的需要直接跳过。  
        vis[v] = true;  // 标记一下  
        ans += now.len;  
        for (int i = 0; i<G[v].size(); i++) {  // 开始更新  
            int v2 = G[v][i].v;  
            int len = G[v][i].len;  
            if (!vis[v2] && dis[v2] > len) {   
                dis[v2] = len;  
                Q.push(node(v2, dis[v2]));  // 更新的点加入队列并排序  
            }  
        }  
    }  
    return ans; 
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Bellman-Ford

单源最短路

Dijkstra

11.迪杰斯特拉算法

/*
    |Dijkstra算法|
    |适用于边权为正的有向图或者无向图|
    |求从单个源点出发,到所有节点的最短路|
    |优化版:时间复杂度 O(elbn)|
    |16/11/05ztx, thanks to chaixiaojun|
*/

struct node {  
    int v, len;  
    node(int v = 0, int len = 0) :v(v), len(len) {}  
    bool operator < (const node &a)const {  //  距离从小到大排序  
        return len > a.len;  
    }  
};  

vector<node>G[maxn];  
bool vis[maxn];  
int dis[maxn];

void init() {  
    for (int i = 0; i<maxn; i++) {  
        G[i].clear();  
        vis[i] = false;  
        dis[i] = INF;  
    }  
}  
int dijkstra(int s, int e) {  
    priority_queue<node>Q;  
    Q.push(node(s, 0)); //  加入队列并排序  
    dis[s] = 0;  
    while (!Q.empty()) {  
        node now = Q.top();     //  取出当前最小的  
        Q.pop();  
        int v = now.v;  
        if (vis[v]) continue;   //  如果标记过了, 直接continue  
        vis[v] = true;  
        for (int i = 0; i<G[v].size(); i++) {   //  更新  
            int v2 = G[v][i].v;  
            int len = G[v][i].len;  
            if (!vis[v2] && dis[v2] > dis[v] + len) {  
                dis[v2] = dis[v] + len;  
                Q.push(node(v2, dis[v2]));  
            }  
        }  
    }  
    return dis[e];  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
SPFA

12.最短路径快速算法(Shortest Path Faster Algorithm)

/*
    |SPFA算法|
    |队列优化|
    |可处理负环|
*/

vector<node> G[maxn];
bool inqueue[maxn];
int dist[maxn];

void Init()  
{  
    for(int i = 0 ; i < maxn ; ++i){  
        G[i].clear();  
        dist[i] = INF;  
    }  
}  
int SPFA(int s,int e)  
{  
    int v1,v2,weight;  
    queue<int> Q;  
    memset(inqueue,false,sizeof(inqueue)); // 标记是否在队列中  
    memset(cnt,0,sizeof(cnt)); // 加入队列的次数  
    dist[s] = 0;  
    Q.push(s); // 起点加入队列  
    inqueue[s] = true; // 标记  
    while(!Q.empty()){  
        v1 = Q.front();  
        Q.pop();  
        inqueue[v1] = false; // 取消标记  
        for(int i = 0 ; i < G[v1].size() ; ++i){ // 搜索v1的链表  
            v2 = G[v1][i].vex;  
            weight = G[v1][i].weight;  
            if(dist[v2] > dist[v1] + weight){ // 松弛操作  
                dist[v2] = dist[v1] + weight;  
                if(inqueue[v2] == false){  // 再次加入队列  
                    inqueue[v2] = true;  
                    //cnt[v2]++;  // 判负环  
                    //if(cnt[v2] > n) return -1;  
                    Q.push(v2);  
                } } }  
    }  
    return dist[e];  
}

/*
    不断的将s的邻接点加入队列,取出不断的进行松弛操作,直到队列为空  

    如果一个结点被加入队列超过n-1次,那么显然图中有负环  
*/
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
Floyd-Warshall

13.弗洛伊德算法

/*
    |Floyd算法|
    |任意点对最短路算法|
    |求图中任意两点的最短距离的算法|
*/

for (int i = 0; i < n; i++) {   //  初始化为0  
    for (int j = 0; j < n; j++)  
        scanf("%lf", &dis[i][j]);  
}  
for (int k = 0; k < n; k++) {  
    for (int i = 0; i < n; i++) {  
        for (int j = 0; j < n; j++) {  
            dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);  
        }  
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

二分图

14.染色法

/*
    |交叉染色法判断二分图|
    |16/11/05ztx|
*/

int bipartite(int s) {  
    int u, v;  
    queue<int>Q;  
    color[s] = 1;  
    Q.push(s);  
    while (!Q.empty()) {  
        u = Q.front();  
        Q.pop();  
        for (int i = 0; i < G[u].size(); i++) {  
            v = G[u][i];  
            if (color[v] == 0) {  
                color[v] = -color[u];  
                Q.push(v);  
            }  
            else if (color[v] == color[u])  
                return 0;  
        }  
    }  
    return 1;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

15..匈牙利算法

/*
    |求解最大匹配问题|
    |递归实现|
    |16/11/05ztx|
*/

vector<int>G[maxn];  
bool inpath[maxn];  //  标记  
int match[maxn];    //  记录匹配对象  
void init()  
{  
    memset(match, -1, sizeof(match));  
    for (int i = 0; i < maxn; ++i) {  
        G[i].clear();  
    }  
}  
bool findpath(int k) {  
    for (int i = 0; i < G[k].size(); ++i) {  
        int v = G[k][i];  
        if (!inpath[v]) {  
            inpath[v] = true;  
            if (match[v] == -1 || findpath(match[v])) { // 递归  
                match[v] = k; // 即匹配对象是“k妹子”的  
                return true;  
            }  
        }  
    }  
    return false;  
}  

void hungary() {  
    int cnt = 0;  
    for (int i = 1; i <= m; i++) {  // m为需要匹配的“妹子”数  
        memset(inpath, false, sizeof(inpath)); // 每次都要初始化  
        if (findpath(i)) cnt++;  
    }  
    cout << cnt << endl;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
/*
    |求解最大匹配问题|
    |dfs实现|
    |16/11/05ztx|
*/

int v1, v2;  
bool Map[501][501];  
bool visit[501];  
int link[501];  
int result;  

bool dfs(int x)  {  
    for (int y = 1; y <= v2; ++y)  {  
        if (Map[x][y] && !visit[y])  {  
            visit[y] = true;  
            if (link[y] == 0 || dfs(link[y]))  {  
                link[y] = x;  
                return true;  
            } } }  
    return false;  
}  


void Search()  {  
    for (int x = 1; x <= v1; x++)  {  
        memset(visit,false,sizeof(visit));  
        if (dfs(x))  
            result++;  
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

动态规划

背包

16.17.18背包问题

/*
    |01背包|
    |完全背包|
    |多重背包|
    |16/11/05ztx|
*/

//  01背包:  

void bag01(int cost,int weight)  {  
    for(i = v; i >= cost; --i)  
    dp[i] = max(dp[i], dp[i-cost]+weight);  
}  

//  完全背包:  

void complete(int cost, int weight)  {  
    for(i = cost ; i <= v; ++i)  
    dp[i] = max(dp[i], dp[i - cost] + weight);  
}  

//  多重背包:  

void multiply(int cost, int weight, int amount)  {  
    if(cost * amount >= v)  
        complete(cost, weight);  
    else{  
        k = 1;  
        while (k < amount){  
            bag01(k * cost, k * weight);  
            amount -= k;  
            k += k;  
        }  
        bag01(cost * amount, weight * amount);  
    }  
}  


// other

int dp[1000000];
int c[55], m[110];
int sum;

void CompletePack(int c) {
    for (int v = c; v <= sum / 2; ++v){
        dp[v] = max(dp[v], dp[v - c] + c);
    }
}

void ZeroOnePack(int c) {
    for (int v = sum / 2; v >= c; --v) {
        dp[v] = max(dp[v], dp[v - c] + c);
    }
}

void multiplePack(int c, int m) {
    if (m * c > sum / 2)
        CompletePack(c);
    else{
        int k = 1;
        while (k < m){
            ZeroOnePack(k * c);
            m -= k;
            k <<= 1;
        }
        if (m != 0){
            ZeroOnePack(m * c);
        }
    }
}

  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

LIS

19.最长上升子序列

/*
    |最长上升子序列|
    |状态转移|
    |16/11/05ztx|
*/

/*
    状态转移dp[i] = max{ 1.dp[j] + 1 };  j<i; a[j]<a[i];
    d[i]是以i结尾的最长上升子序列
    与i之前的 每个a[j]<a[i]的 j的位置的最长上升子序列+1后的值比较
*/

void solve(){   // 参考挑战程序设计入门经典;
    for(int i = 0; i < n; ++i){  
        dp[i] = 1;  
        for(int j = 0; j < i; ++j){  
            if(a[j] < a[i]){  
                dp[i] = max(dp[i], dp[j] + 1);  
            } } }
}  

/* 
    优化方法:
    dp[i]表示长度为i+1的上升子序列的最末尾元素  
    找到第一个比dp末尾大的来代替 
*/

    void solve() {  
        for (int i = 0; i < n; ++i){
            dp[i] = INF;
        }
        for (int i = 0; i < n; ++i) {  
            *lower_bound(dp, dp + n, a[i]) = a[i];  //  返回一个指针  
        }  
        printf("%d\n", *lower_bound(dp, dp + n, INF) - dp;  
    }

/*  
    函数lower_bound()返回一个 iterator 它指向在[first,last)标记的有序序列中可以插入value,而不会破坏容器顺序的第一个位置,而这个位置标记了一个不小于value的值。
*/
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

LCS

20.最长公共子序列

/*
    |求最长公共子序列|
    |递推形式|
    |16/11/05ztx|
*/

void solve() {  
    for (int i = 0; i < n; ++i) {  
        for (int j = 0; j < m; ++j) {  
            if (s1[i] == s2[j]) {  
                dp[i + 1][j + 1] = dp[i][j] + 1;  
            }else {  
                dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]);  
            } } }
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

计算几何

21.向量基本用法

/*
    |16/11/06ztx|
*/

struct node {  
    double x; // 横坐标  
    double y; // 纵坐标  
};  

typedef node Vector;

Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }  
Vector operator - (Point A, Point B) { return Vector(A.x - B.y, A.y - B.y); }  
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }  
Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y*p); }  

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } // 向量点乘  
double Length(Vector A) { return sqrt(Dot(A, A)); }  // 向量模长  
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }  // 向量之间夹角  

double Cross(Vector A, Vector B) { // 叉积计算 公式  
    return A.x*B.y - A.y*B.x;  
}  

Vector Rotate(Vector A, double rad) // 向量旋转 公式  {  
    return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));  
}  

Point getLineIntersection(Point P, Vector v, Point Q, Vector w) { // 两直线交点t1 t2计算公式   
    Vector u = P - Q;   
    double t = Cross(w, u) / Cross(v, w);  // 求得是横坐标  
    return P + v*t;  // 返回一个点  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

22.求多边形面积

/*
    |16/11/06ztx|
*/

node G[maxn];  
int n;  

double Cross(node a, node b) { // 叉积计算  
    return a.x*b.y - a.y*b.x;  
}  


int main()  
{  
    while (scanf("%d", &n) != EOF && n) {  
        for (int i = 0; i < n; i++)   
            scanf("%lf %lf", &G[i].x, &G[i].y);  
        double sum = 0;  
        G[n].x = G[0].x;  
        G[n].y = G[0].y;  
        for (int i = 0; i < n; i++) {   
                sum += Cross(G[i], G[i + 1]);  
        }  
        // 或者  
            //for (int i = 0; i < n; i++) {  
                //sum += fun(G[i], G[(i + 1)% n]);  
            //}  
        sum = sum / 2.0;  
        printf("%.1f\n", sum);  
    }  
    system("pause");  
    return 0;  
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

23..判断线段相交

/*
    |16/11/06ztx|
*/

node P[35][105];     

double Cross_Prouct(node A,node B,node C) {     //  计算BA叉乘CA     
    return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);      
}      
bool Intersect(node A,node B,node C,node D)  {  //  通过叉乘判断线段是否相交;           
    if(min(A.x,B.x)<=max(C.x,D.x)&&         //  快速排斥实验;      
       min(C.x,D.x)<=max(A.x,B.x)&&      
       min(A.y,B.y)<=max(C.y,D.y)&&      
       min(C.y,D.y)<=max(A.y,B.y)&&      
       Cross_Prouct(A,B,C)*Cross_Prouct(A,B,D)<0&&      //  跨立实验;      
       Cross_Prouct(C,D,A)*Cross_Prouct(C,D,B)<0)       //  叉乘异号表示在两侧;      
       return true;      
    else return false;      
}    
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

24.求三角形外心

/*
    |16/11/06ztx|
*/

Point circumcenter(const Point &a, const Point &b, const Point &c) { //返回三角形的外心        
    Point ret;  
    double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1) / 2;  
    double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2) / 2;  
    double d = a1*b2 - a2*b1;  
    ret.x = a.x + (c1*b2 - c2*b1) / d;  
    ret.y = a.y + (a1*c2 - a2*c1) / d;  
    return ret;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

24.极角排序

/*
    |16/11/06ztx|
*/

double cross(point p1, point p2, point q1, point q2) {  // 叉积计算   
    return (q2.y - q1.y)*(p2.x - p1.x) - (q2.x - q1.x)*(p2.y - p1.y);  
}  
bool cmp(point a, point b)  {  
    point o;  
    o.x = o.y = 0;  
    return cross(o, b, o, a) < 0; // 叉积判断  
}  
sort(convex + 1, convex + cnt, cmp); // 按角排序, 从小到大 
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

字符串

kmp

25.克努特-莫里斯-普拉特操作

/*
    |kmp算法|
    |字符串匹配|
    |17/1/21ztx|
*/

void getnext(char str[maxn], int nextt[maxn]) {
    int j = 0, k = -1;
    nextt[0] = -1;
    while (j < m) {
        if (k == -1 || str[j] == str[k]) {
            j++;
            k++;
            nextt[j] = k;
        }
        else
            k = nextt[k];
    }
}

void kmp(int a[maxn], int b[maxn]) {    
    int nextt[maxm];    
    int i = 0, j = 0;    
    getnext(b, nextt);    
    while (i < n) {    
        if (j == -1 || a[i] == b[j]) { // 母串不动,子串移动    
            j++;    
            i++;    
        }    
        else {    
            // i不需要回溯了    
            // i = i - j + 1;    
            j = nextt[j];    
        }    
        if (j == m) {    
            printf("%d\n", i - m + 1); // 母串的位置减去子串的长度+1    
            return;    
        }    
    }    
    printf("-1\n");
}    
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

26.kmp扩展

/*
    |16/11/06ztx|
*/

#include<iostream>    
#include<cstring>    

using namespace std;

const int MM=100005;    

int next[MM],extand[MM];    
char S[MM],T[MM];    

void GetNext(const char *T) {    
    int len = strlen(T),a = 0;    
    next[0] = len;    
    while(a < len - 1 && T[a] == T[a + 1]) a++;    
    next[1] = a;    
    a = 1;    
    for(int k = 2; k < len; k ++) {    
        int p = a + next[a] - 1,L = next[k - a];    
        if( (k - 1) + L >= p) {    
            int j = (p - k + 1) > 0 ? (p - k + 1) : 0;    
            while(k + j < len && T[k + j] == T[j]) j++;    
            next[k] = j;    
            a = k;    
        }else next[k] = L;    
    }    
}    
void GetExtand(const char *S,const char *T) {    
    GetNext(T);    
    int slen = strlen(S),tlen = strlen(T),a = 0;    
    int MinLen = slen < tlen ? slen : tlen;    
    while(a < MinLen && S[a] == T[a]) a++;    
    extand[0] = a;     
    a = 0;    
    for(int k = 1; k < slen; k ++) {    
        int p = a + extand[a] - 1, L = next[k - a];    
        if( (k - 1) + L >= p) {    
            int j = (p - k + 1) > 0 ? (p - k + 1) : 0;    
            while(k + j < slen && j < tlen && S[k + j] == T[j]) j ++;    
            extand[k] = j;    
            a = k;    
        } else    
            extand[k] = L;    
    }    
}    
void show(const int *s,int len){    
    for(int i = 0; i < len; i ++)    
            cout << s[i] << ' ';    
    cout << endl;    
}    

int main() {    
    while(cin >> S >> T) {    
        GetExtand(S,T);    
        show(next,strlen(T));    
        show(extand,strlen(S));    
    }    
    return 0;    
}   
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

字典树

27.字典树

/*
    |16/11/06ztx|
*/

struct Trie{  
    int cnt;  
    Trie *next[maxn];  
    Trie(){  
        cnt = 0;  
        memset(next,0,sizeof(next));  
    }  
};  

Trie *root;  

void Insert(char *word)  {  
    Trie *tem = root;  
    while(*word != '\0')  {  
        int x = *word - 'a';  
        if(tem->next[x] == NULL)  
            tem->next[x] = new Trie;  
        tem = tem->next[x];  
        tem->cnt++;  
        word++;  
    }  
}  

int Search(char *word)  {  
    Trie *tem = root;  
    for(int i=0;word[i]!='\0';i++)  {  
        int x = word[i]-'a';  
        if(tem->next[x] == NULL)  
            return 0;  
        tem = tem->next[x];  
    }  
    return tem->cnt;  
}  

void Delete(char *word,int t) {  
    Trie *tem = root;  
    for(int i=0;word[i]!='\0';i++)  {  
        int x = word[i]-'a';  
        tem = tem->next[x];  
        (tem->cnt)-=t;  
    }  
    for(int i=0;i<maxn;i++)  
        tem->next[i] = NULL;  
}  

int main() {  
    int n;  
    char str1[50];  
    char str2[50];  
    while(scanf("%d",&n)!=EOF)  {  
        root = new Trie;  
        while(n--)  {  
            scanf("%s %s",str1,str2);  
            if(str1[0]=='i') {
                Insert(str2); 
            }else if(str1[0] == 's')  {  
                if(Search(str2))  
                    printf("Yes\n");  
                else  
                    printf("No\n");  
            }else  {  
                int t = Search(str2);  
                if(t)  
                    Delete(str2,t);  
            } } }  
    return 0;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

28.AC自动机

/*
    |16/11/06ztx|
*/

#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<string>  

using namespace std;  

#define N 1000010  

char str[N], keyword[N];  
int head, tail;  

struct node {  
    node *fail;  
    node *next[26];  
    int count;  
    node() { //init  
        fail = NULL;// 默认为空  
        count = 0;  
        for(int i = 0; i < 26; ++i)  
            next[i] = NULL;  
    }  
}*q[N];  

node *root;  

void insert(char *str)  { // 建立Trie  
    int temp, len;  
    node *p = root;  
    len = strlen(str);  
    for(int i = 0; i < len; ++i)  {  
        temp = str[i] - 'a';  
        if(p->next[temp] == NULL)  
            p->next[temp] = new node();  
        p = p->next[temp];  
    }  
    p->count++;  
}  

void build_ac() { // 初始化fail指针,BFS 数组模拟队列:   
    q[tail++] = root;  
    while(head != tail)  {  
        node *p = q[head++]; // 弹出队头  
        node *temp = NULL;  
        for(int i = 0; i < 26; ++i)  {  
            if(p->next[i] != NULL)  {  
                if(p == root) { // 第一个元素fail必指向根  
                    p->next[i]->fail = root;
                }else {  
                    temp = p->fail; // 失败指针  
                    while(temp != NULL) { // 2种情况结束:匹配为空or找到匹配 
                        if(temp->next[i] != NULL) { // 找到匹配  
                            p->next[i]->fail = temp->next[i];  
                            break;  
                        }  
                        temp = temp->fail;  
                    }  
                    if(temp == NULL) // 为空则从头匹配  
                        p->next[i]->fail = root;  
                }  
                q[tail++] = p->next[i]; // 入队  
            } } }  
}  

int query() // 扫描  
{  
    int index, len, result;  
    node *p = root; // Tire入口  
    result = 0;  
    len = strlen(str);  
    for(int i = 0; i < len; ++i)  
    {  
        index = str[i] - 'a';  
        while(p->next[index] == NULL && p != root) // 跳转失败指针  
            p = p->fail;  
        p = p->next[index];  
        if(p == NULL)  
            p = root;  
        node *temp = p; // p不动,temp计算后缀串  
        while(temp != root && temp->count != -1)   {  
            result += temp->count;  
            temp->count = -1;  
            temp = temp->fail;  
        }  
    }  
    return result;  
}  

int main() {  
    int num;  
    head= tail = 0;  
    root = new node();  
    scanf("%d", &num);  
    getchar();  
    for(int i = 0; i < num; ++i) {  
       scanf("%s",keyword);  
        insert(keyword);  
    }  
    build_ac();  
    scanf("%s", str);  
    if(query())  
        printf("YES\n");  
    else  
        printf("NO\n");  
    return 0;  
}  

/*
    假设有N个模式串,平均长度为L;文章长度为M。 建立Trie树:O(N*L) 建立fail指针:O(N*L) 模式匹配:O(M*L) 所以,总时间复杂度为:O( (N+M)*L )。
*/
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

线段树

29.线段树
1)点更新

/*
    |16/12/07ztx|
*/

struct node
{
    int left, right;
    int max, sum;
};

node tree[maxn << 2];
int a[maxn];
int n;
int k = 1;
int p, q;
string str;

void build(int m, int l, int r)//m 是 树的标号
{
    tree[m].left = l;
    tree[m].right = r;
    if (l == r){
        tree[m].max = a[l];
        tree[m].sum = a[l];
        return;
    }
    int mid = (l + r) >> 1;
    build(m << 1, l, mid);
    build(m << 1 | 1, mid + 1, r);
    tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
    tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}

void update(int m, int a, int val)//a 是 节点位置, val 是 更新的值(加减的值)
{
    if (tree[m].left == a && tree[m].right == a){
        tree[m].max += val;
        tree[m].sum += val;
        return;
    }
    int mid = (tree[m].left + tree[m].right) >> 1;
    if (a <= mid){
        update(m << 1, a, val);
    }
    else{
        update(m << 1 | 1, a, val);
    }
    tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
    tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}

int querySum(int m, int l, int r)
{
    if (l == tree[m].left && r == tree[m].right){
        return tree[m].sum;
    }
    int mid = (tree[m].left + tree[m].right) >> 1;
    if (r <= mid){
        return querySum(m << 1, l, r);
    }
    else if (l > mid){
        return querySum(m << 1 | 1, l, r);
    }
    return querySum(m << 1, l, mid) + querySum(m << 1 | 1, mid + 1, r);
}

int queryMax(int m, int l, int r)
{
    if (l == tree[m].left && r == tree[m].right){
        return tree[m].max;
    }
    int mid = (tree[m].left + tree[m].right) >> 1;
    if (r <= mid){
        return queryMax(m << 1, l, r);
    }
    else if (l > mid){
        return queryMax(m << 1 | 1, l, r);
    }
    return max(queryMax(m << 1, l, mid), queryMax(m << 1 | 1, mid + 1, r));
} 

build(1,1,n);  
update(1,a,b);  
query(1,a,b);  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84

2)区间更新

/*
    |16/11/06ztx|
*/

typedef long long ll;  
const int maxn = 100010;  

int t,n,q;  
ll anssum;  

struct node{  
    ll l,r;  
    ll addv,sum;  
}tree[maxn<<2];  

void maintain(int id) {  
    if(tree[id].l >= tree[id].r)  
        return ;  
    tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;  
}  

void pushdown(int id) {  
    if(tree[id].l >= tree[id].r)  
        return ;  
    if(tree[id].addv){  
        int tmp = tree[id].addv;  
        tree[id<<1].addv += tmp;  
        tree[id<<1|1].addv += tmp;  
        tree[id<<1].sum += (tree[id<<1].r - tree[id<<1].l + 1)*tmp;  
        tree[id<<1|1].sum += (tree[id<<1|1].r - tree[id<<1|1].l + 1)*tmp;  
        tree[id].addv = 0;  
    }  
}  

void build(int id,ll l,ll r) {  
    tree[id].l = l;  
    tree[id].r = r;  
    tree[id].addv = 0;  
    tree[id].sum = 0;  
    if(l==r)  {  
        tree[id].sum = 0;  
        return ;  
    }  
    ll mid = (l+r)>>1;  
    build(id<<1,l,mid);  
    build(id<<1|1,mid+1,r);  
    maintain(id);  
}  

void updateAdd(int id,ll l,ll r,ll val) {  
    if(tree[id].l >= l && tree[id].r <= r)  
    {  
        tree[id].addv += val;  
        tree[id].sum += (tree[id].r - tree[id].l+1)*val;  
        return ;  
    }  
    pushdown(id);  
    ll mid = (tree[id].l+tree[id].r)>>1;  
    if(l <= mid)  
        updateAdd(id<<1,l,r,val);  
    if(mid < r)  
        updateAdd(id<<1|1,l,r,val);  
    maintain(id);  
}  

void query(int id,ll l,ll r) {  
    if(tree[id].l >= l && tree[id].r <= r){  
        anssum += tree[id].sum;  
        return ;  
    }  
    pushdown(id);  
    ll mid = (tree[id].l + tree[id].r)>>1;  
    if(l <= mid)  
        query(id<<1,l,r);  
    if(mid < r)  
        query(id<<1|1,l,r);  
    maintain(id);  
}  

int main() {  
    scanf("%d",&t);  
    int kase = 0 ;  
    while(t--){  
        scanf("%d %d",&n,&q);  
        build(1,1,n);  
        int id;  
        ll x,y;  
        ll val;  
        printf("Case %d:\n",++kase);  
        while(q--){  
            scanf("%d",&id);  
            if(id==0){  
                scanf("%lld %lld %lld",&x,&y,&val);  
                updateAdd(1,x+1,y+1,val);  
            }  
            else{  
                scanf("%lld %lld",&x,&y);  
                anssum = 0;  
                query(1,x+1,y+1);  
                printf("%lld\n",anssum);  
            } } }  
    return 0;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103

30.树状数组

/*
    |16/11/06ztx|
*/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>

using namespace std;

typedef long long ll;

const int maxn = 50005;

int a[maxn];
int n;

int lowbit(const int t) {
    return t & (-t);
}

void insert(int t, int d) {
    while (t <= n){
        a[t] += d;
        t = t + lowbit(t);
    }
}

ll getSum(int t) {
    ll sum = 0;
    while (t > 0){
        sum += a[t];
        t = t - lowbit(t);
    }
    return sum;
}

int main() {
    int t, k, d;
    scanf("%d", &t);
    k= 1;
    while (t--){
        memset(a, 0, sizeof(a));
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i) {
            scanf("%d", &d);
            insert(i, d);
        }
        string str;
        printf("Case %d:\n", k++);
        while (cin >> str) {
            if (str == "End")   break;
            int x, y;
            scanf("%d %d", &x, &y);
            if (str == "Query")
                printf("%lld\n", getSum(y) - getSum(x - 1));
            else if (str == "Add")
                insert(x, y);
            else if (str == "Sub")
                insert(x, -y);
        }
    }
    return 0;
}

  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67

其他

31.中国剩余定理(孙子定理)

/*
    |16/11/06ztx|
*/

int CRT(int a[],int m[],int n)  {    
    int M = 1;    
    int ans = 0;    
    for(int i=1; i<=n; i++)    
        M *= m[i];    
    for(int i=1; i<=n; i++)  {    
        int x, y;    
        int Mi = M / m[i];    
        extend_Euclid(Mi, m[i], x, y);    
        ans = (ans + Mi * x * a[i]) % M;    
    }    
    if(ans < 0) ans += M;    
    return ans;    
}  

void extend_Euclid(int a, int b, int &x, int &y)  {  
    if(b == 0) {  
        x = 1;  
        y = 0;  
        return;  
    }  
    extend_Euclid(b, a % b, x, y);  
    int tmp = x;  
    x = y;  
    y = tmp - (a / b) * y;  
}  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
在此感谢那些在编程上给予我帮助的熟悉的同学、师长,网络另一端的朋友;没有你们的倾囊相授,这份模板不可以在一天整理完毕。谢谢阅读~
一.数论 4 1.阶乘最后非零位 4 2. 模线性方程(组) 4 3. 素数表 6 4. 素数随机判定(miller_rabin) 6 5. 质因数分解 7 6. 最大公约数欧拉函数 8 二.图论_匹配 9 1. 二分图最大匹配(hungary邻接表形式) 9 2. 二分图最大匹配(hungary邻接表形式,邻接阵接口) 10 3. 二分图最大匹配(hungary邻接阵形式) 10 4. 二分图最大匹配(hungary正向表形式) 11 5. 二分图最佳匹配(kuhn_munkras邻接阵形式) 11 6. 一般图匹配(邻接表形式) 12 7. 一般图匹配(邻接表形式,邻接阵接口) 13 8. 一般图匹配(邻接阵形式) 14 9. 一般图匹配(正向表形式) 15 三.图论_生成树 16 1. 最小生成树(kruskal邻接表形式) 16 2. 最小生成树(kruskal正向表形式) 17 3. 最小生成树(prim+binary_heap邻接表形式) 19 4. 最小生成树(prim+binary_heap正向表形式) 20 5. 最小生成树(prim+mapped_heap邻接表形式) 21 6. 最小生成树(prim+mapped_heap正向表形式) 22 7. 最小生成树(prim邻接阵形式) 23 8. 最小树形图(邻接阵形式) 24 四.图论_网络流 25 1. 上下界最大流(邻接表形式) 25 2. 上下界最大流(邻接阵形式) 26 3. 上下界最小流(邻接表形式) 27 4. 上下界最小流(邻接阵形式) 29 5. 最大流(邻接表形式) 30 6. 最大流(邻接表形式,邻接阵接口) 31 7. 最大流(邻接阵形式) 32 8. 最大流无流量(邻接阵形式) 32 9. 最小费用最大流(邻接阵形式) 33 五. 图论_最短路径 34 1. 最短路径(单源bellman_ford邻接阵形式) 34 2. 最短路径(单源dijkstra_bfs邻接表形式) 35 3. 最短路径(单源dijkstra_bfs正向表形式) 35 4. 最短路径(单源dijkstra+binary_heap邻接表形式) 36 5. 最短路径(单源dijkstra+binary_heap正向表形式) 37 6. 最短路径(单源dijkstra+mapped_heap邻接表形式) 38 7. 最短路径(单源dijkstra+mapped_heap正向表形式) 39 8. 最短路径(单源dijkstra邻接阵形式) 40 9. 最短路径(多源floyd_warshall邻接阵形式) 40 六. 图论_连通性 41 1. 无向图关键边(dfs邻接阵形式) 41 2. 无向图关键点(dfs邻接阵形式) 42 3. 无向图块(bfs邻接阵形式) 43 4. 无向图连通分支(bfs邻接阵形式) 43 5. 无向图连通分支(dfs邻接阵形式) 44 6. 有向图强连通分支(bfs邻接阵形式) 44 7. 有向图强连通分支(dfs邻接阵形式) 45 8. 有向图最小点基(邻接阵形式) 46 七. 图论_应用 46 1.欧拉回路(邻接阵形式) 46 2. 前序表转化 47 3. 树的优化算法 48 4. 拓扑排序(邻接阵形式). 49 5. 最佳边割集 50 6. 最佳顶点割集 51 7. 最小边割集 52 8. 最小顶点割集 53 9. 最小路径覆盖 55 八. 图论_NP搜索 55 1. 最大团(n小于64)(faster) 55 2. 最大团 58 九. 组合 59 1. 排列组合生成 59 2. 生成gray码 60 3. 置换(polya) 61 4. 字典序全排列 61 5. 字典序组合 62 6. 组合公式 62 十. 数值计算 63 1. 定积分计算(Romberg) 63 2. 多项式求根(牛顿法) 64 3. 周期性方程(追赶法) 66 十一. 几何 67 1. 多边形 67 2. 多边形切割 70 3. 浮点函数 71 4. 几何公式 76 5. 面积 78 6. 球面 79 7. 三角形 79 8. 三维几何 81 9. 凸包(graham) 89 10. 网格(pick) 91 11. 圆 92 12. 整数函数 94 13. 注意 96 十二. 结构 97 1. 并查集 97 2. 并查集扩展(friend_enemy) 98 3. 堆(binary) 98 4. 堆(mapped) 99 5. 矩形切割 99 6. 线段树 100 7. 线段树扩展 102 8. 线段树应用 105 9. 子段和 105 10. 子阵和 105 十三. 其他 106 1. 分数 106 2. 矩阵 108 3. 日期 110 4. 线性方程组(gauss) 111 5. 线性相关 113 十四. 应用 114 1. joseph 114 2. N皇后构造解 115 3. 布尔母函数 115 4. 第k元素 116 5. 幻方构造 116 6. 模式匹配(kmp) 118 7. 逆序对数 118 8. 字符串最小表示 119 9. 最长公共单调子序列 119 10. 最长子序列 120 11. 最大子串匹配 121 12. 最大子段和 122 13. 最大子阵和 123
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值