小明系列问题——小明序列(线段树+dp)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_37668729/article/details/78167243

小明系列问题——小明序列

Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other)
Total Submission(s) : 31   Accepted Submission(s) : 14
Problem Description
  大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。

  提起小明序列,他给出的定义是这样的:
  ①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ;
  ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ;
  ③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ;
  ④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
  ⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
  例如:序列S={2,1,3,4} ,其中d=1;
  可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。

  当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
 

Input
  输入数据多组,处理到文件结束;   输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5)   输入的第二行为n个整数A1 , A2 , A3 , ... , An,表示S序列的n个元素。(0<=Ai<=10^5)
 

Output
  请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
 

Sample Input
2 0 1 2 5 1 3 4 5 1 2 5 2 3 4 5 1 2
 

Sample Output
2 2 1
 

Source
2013腾讯编程马拉松初赛第四场(3月24日)
 


思路:

基本上就是dp了,此处线段树用来找前面数的最大值(节省时间),dp[i] = max(dp[j] + 1)其中a[i] > a[j], 我们把以第i个元素为结尾的最长上升子序列放到线段树对应值为a[i]的叶子上(有点hash思想,这是为了保证上升这个特性,查询的时候方便),当然如果此时的i-d<=1就不用插入了,这时候用不到任何的前置状态。需要用我们就插入一次,而且每次插入我们都能保证那个点和当前点i的距离一定大于d(之前已经空了d个位置),到时就直接去线段树上小于a[i]的区间找最大值就可以。注意数值为0时的特殊情况

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#define N 100010
using namespace std;

int dp[N];
int arr[N];

struct node
{
	int l, r;
	int v;
}tree[N<<2];

void build(int pos, int l, int r) //jianshu 
{
	tree[pos].l = l;
	tree[pos].r = r;
	tree[pos].v = 0;
	if (l == r)
	{
		return;
	}
	int mid = (l + r)/2;
	build(pos*2, l, mid);
	build(pos*2+1, mid + 1, r);
}

void update(int p, int pos, int val)
{
	if (tree[p].l == tree[p].r)
	{
		tree[p].v = val;
		return;
	}
	int mid = (tree[p].l + tree[p].r)/2;
	if (pos <= mid)
	{
		update(p*2, pos, val);
	}
	else
	{
		update(p*2+1, pos, val);
	}
	tree[p].v= max(tree[p*2].v, tree[p*2+1].v); //max 
}

int query(int p, int l, int r)
{
	if (l <= tree[p].l && tree[p].r <= r)
	{
		return tree[p].v;
	}
	int mid = (tree[p].l + tree[p].r)/2;
	if (r<=mid)                   //jizhu三 
	{
		return query(p*2, l, r);
	}
	else if (l > mid)
	{
		return query(p*2+1, l, r);
	}
	else
	{
		return max(query(p*2, l, mid), query(p*2+1,mid + 1,r));
	}
}

int main()
{
	int n, d;
	int i; 
	while(scanf("%d%d", &n, &d)!=EOF)
	{
		int r=-100;
		for (i = 1; i <= n; ++i)
		{
			scanf("%d", &arr[i]);
			r=max(r, arr[i]); //max 
		}
		build(1, 0, r);
		int ans = 0;
		for (i = 1; i <= n; i++)
		{
			if (i-d-1>0){
				update(1, arr[i - d - 1], dp[i - d - 1]);
			}
			if(arr[i]==0){
				dp[i]=1;
			} 
			else
			{
				dp[i] = query(1, 0, arr[i] - 1) + 1;
			}
			ans = max(ans, dp[i]);
		//	printf("%d\n", dp[i]);
		}
		printf("%d\n", ans);
	}
	return 0;
}


展开阅读全文

没有更多推荐了,返回首页