HDU——1077 Catching fish(几何问题)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_38052999/article/details/79953198

Problem Description

Ignatius likes catching fish very much. He has a fishnet whose shape is a circle of radius one. Now he is about to use his fishnet to catch fish. All the fish are in the lake, and we assume all the fish will not move when Ignatius catching them. Now Ignatius wants to know how many fish he can catch by using his fishnet once. We assume that the fish can be regard as a point. So now the problem is how many points can be enclosed by a circle of radius one.

Note: If a fish is just on the border of the fishnet, it is also caught by Ignatius.

Input

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case starts with a positive integer N(1<=N<=300) which indicate the number of fish in the lake. Then N lines follow. Each line contains two floating-point number X and Y (0.0<=X,Y<=10.0). You may assume no two fish will at the same point, and no two fish are closer than 0.0001, no two fish in a test case are approximately at a distance of 2.0. In other words, if the distance between the fish and the centre of the fishnet is smaller 1.0001, we say the fish is also caught.

Output

For each test case, you should output the maximum number of fish Ignatius can catch by using his fishnet once.

Sample Input

4
3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210

Sample Output

2
5
5
11

解题思路:

枚举画圆 , 记录单位圆最多可以圈住的点的数量。
枚举选取其中两个点 , 如果两个点的距离小于2,则证明这两个点可以在同一个圆里面(注意:这里隐藏了 从每个最少放两个点的情况考虑 , 但是最后结果也有可能是 最多只能圈住一个点 ,这点对应在代码中 maxsum 的初值设定问题)。此时以这两个点可以确定一个半径为1 的 单位圆 , 主要求出圆心位置即可。然后在一个枚举 , 对比记录与这个圆心距离小于 1 的点的个数。

代码:

//枚举圆心
/* 选取任意两个点 , 求取两点所在的以 1 为半径的圆的圆心, 作圆 , 计算该圆中有多少点。*/
#include <cstdio>
#include <math.h>
using namespace std;

double x[305];
double y[305];
int n;

double distance1(int i , int  j){   //求 距离的平方
    double dis = 0;
    dis = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
    return dis;
}

void getCenter(int i , int j){   //求 圆心
    x[n+1] = (x[i] + x[j]) / 2;  //中心点
    y[n+1] = (y[i] + y[j]) / 2;

    double k = -1 *  (x[i] - x[j])/(y[i] - y[j]);
    //k1 * k2 = -1
    //float k2 = -1 / k1;   //中垂线的 k
    double rad = atan(k);

    double len = sqrt(1 - distance1( i , n + 1));   //中点 到 圆心 的距离

    x[n] = x[n+1] + (len * cos(rad));
    y[n] = y[n+1] + (len * sin(rad));

}

int main(){
    //freopen("D://testData//1077.txt","r",stdin);// 数据太多 , 直接从文件读
    int t , i , j , maxsum = 0, ans;

    scanf("%d" , &t);
    while(t -- ){
       ans = 0;
       maxsum = 1;    //!!!!一定不能是 0 呀 , 因为我们一下考虑的情况都是每个圈里最少有2个点 , 将一个点的都没有考虑。
       scanf("%d" , &n);

       for(i = 0 ; i < n ; i ++){
            scanf("%lf %lf" , &x[i] , &y[i]);
       }

       for(i = 0 ; i < n ; i ++){
            for(j = i + 1 ; j < n ; j ++){
                ans = 0;
                if(distance1(i , j) > 4){   //如果两点之间的距离的平方大于 4 , 那么就不考虑这个情况。
                    continue;
                }

                getCenter(i ,j);

                for(int k = 0 ; k < n ; k ++){
                    if(distance1(k , n) <= 1.001)
                        ans ++;
                }
                if(ans > maxsum)
                    maxsum = ans;
            }
       }
       printf("%d\n" , maxsum);

    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页