1. ModelCheckpoint (用于保存最优模型)
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)
该回调函数最大的作用是可以保存在验证集上效果最好的那一个model
filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入
例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。
参数
filename:保存模型的路径
monitor:需要监视的值,如val_loss
save_best_only:当设置为
True时,将只保存在验证集上性能最好的模型mode:‘auto’,‘min’,‘max’之一,在
save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
period:CheckPoint之间的间隔的epoch数
(目前已经有点感觉这东西没啥卵用了,不过先留着吧)
1735

被折叠的 条评论
为什么被折叠?



