语义检索-BAAI Embedding语义向量模型深度解析:微调Cross-Encoder以提升语义检索精度
语义向量模型(Embedding Model)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源

BGE 出色的语义表征能力源于两方面要素:1)针对表征的预训练,2)大规模文本对训练。
BGE 在悟道 、Pile 两个大规模语料集上采取了针对表征的预训练算法 RetroMAE :将低掩码率的输入编码为语义向量(Embed),再将高掩码率的输入与语义向量拼接以重建原始输入。这样一来,BGE 得以利用无标签语料实现语言模型基座对语义表征任务的适配。

BGE 针对中文、英文分别构建了多达120M、232M的样本对数据,从而帮助模型

订阅专栏 解锁全文
1700

被折叠的 条评论
为什么被折叠?



