机器学习考试

1.试证明Jensen不等式:对任意凸函数 f ( x ) f(x) f(x),有 f ( E ( x ) ) ≤ E ( f ( x ) ) f(E(x))≤E(f(x)) f(E(x))E(f(x))

显然,对任意凸函数f(x),必然有 f ( α x 1 + ( 1 − α ) x 2 ) ≤ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f ( E ( x ) ) = f ( 1 m ∑ i m x i ) = f ( m − 1 m 1 m − 1 ∑ i m − 1 x i + 1 m x i ) f(αx_1+(1-α)x_2) \leq αf(x_1)+(1-α)f(x_2) f(E(x))=f(\frac{1}{m}\sum_i^mx_i)=f(\frac{m-1}{m}\frac{1}{m-1}\sum_i^{m-1}x_i+\frac{1}{m}x_i) f(αx1+(1α)x2)αf(x1)+(1α)f(x2)f(E(x))=f(m1imxi)=f(mm1m11im1xi+m1xi)
α = m − 1 m α=\frac{m-1}{m} α=mm1

所以: f ( E ( x ) ) ≤ m − 1 m f ( 1 m − 1 ∑ i m − 1 x i ) + 1 m f ( x m ) f(E(x)) \leq \frac{m-1}{m}f(\frac{1}{m-1}\sum_i^{m-1}x_i)+\frac{1}{m}f(x_m) f(E(x))mm1f(m11im1xi)+m1f(xm)

以此类推得: f ( E ( x ) ) ≤ 1 m f ( x 1 ) + 1 m f ( x 2 ) + . . . . . . . + 1 m f ( x m ) = E ( f ( x ) ) f(E(x)) \leq \frac{1}{m}f(x_1)+\frac{1}{m}f(x_2)+.......+\frac{1}{m}f(x_m)=E(f(x)) f(E(x))m1f(x1)+m1f(x2)+.......+m1f(xm)=E(f(x))

2.试证明引理12.1。

引理(12.1)若训练集D包含m个从分布Ɗ上独立同分布采样而得的样例,0<ε<1,则对任意 h ∈ H h \in H hH,有 P ( ∣ E ^ ( h ) − E ( h ) ∣ ≥ ε ) ≤ 2 e − 2 m ε 2 P(|\hat{E}(h)-E(h) |\geq ε) \leq 2e^{-2mε^2} P(E^(h)E(h)ε)2e2mε2

已知Hoeffding不等式:若 x 1 , x 2 . . . . x m x_1,x_2....x_m x1,x2....xm为m个独立的随机变量,且满足 0 ≤ x i ≤ 1 0 \leq x_i \leq 1 0xi1,则对任意ε>0,有

P ( ∣ 1 m ∑ i m x i − 1 m ∑ i m E ( x i ) ∣ ≥ ε ) ≤ 2 e − 2 m ε 2 . P(|\frac{1}{m}\sum_i^mx_i-\frac{1}{m}\sum_i^mE(x_i)|\geq ε) \leq 2e^{-2mε^2}. P(m1imxim1imE(xi)ε)2e2mε2.

x i x_i xi替换为损失函数 l ( h ( x i ) ≠ y i ) l(h(x_i) \neq y_i) l(h(xi)=yi),显然 0 ≤ l ( h ( x i ) ≠ y i ) ≤ 1 0 \leq l(h(x_i) \neq y_i) \leq 1 0l(h(xi)=yi)1,且独立。

带入Hoeffding不等式得:
P ( ∣ 1 m ∑ i m l ( h ( x i ) ≠ y i ) − 1 m ∑ i m E ( l ( h ( x i ) ≠ y i ) ) ∣ ≥ ε ) ≤ 2 e − 2 m ε 2 P(|\frac{1}{m}\sum_i^ml(h(x_i) \neq y_i)-\frac{1}{m}\sum_i^mE(l(h(x_i) \neq y_i))|\geq ε) \leq 2e^{-2mε^2} P(m1iml(h(xi)=yi)m1imE(l(h(xi)=yi))ε)2e2mε2

其中 E ^ ( h ) = 1 m ∑ i m l ( h ( x i ) ≠ y i ) \hat{E}(h)=\frac{1}{m}\sum_i^ml(h(x_i) \neq y_i) E^(h)=m1iml(h(xi)=yi)
E ( h ) = P x ∈ Ɗ l ( h ( x ) ≠ y ) = E ( l ( h ( x ) ≠ y ) ) = 1 m ∑ i m E ( l ( h ( x i ) ≠ y i ) ) E(h) =P_{x \in Ɗ}l(h(x) \neq y) =E(l(h(x) \neq y)) = \frac{1}{m}\sum_i^mE(l(h(x_i) \neq y_i)) E(h)=PxƊl(h(x)=y)=E(l(h(x)=y))=m1imE(l(h(xi)=yi))

所以有: P ( ∣ E ^ ( h ) − E ( h ) ∣ ≥ ε ) ≤ 2 e − 2 m ε 2 。 P(|\hat{E}(h)-E(h) |\geq ε) \leq 2e^{-2mε^2}。 P(E^(h)E(h)ε)2e2mε2

3.试证明推论12.1。

推论(12.1):若训练集D包含m个从分布Ɗ上独立同分布采样而得的样例,0<ε<1,则对任意 h ∈ H h \in H hH,式(12.18)以至少1-δ的概率成立。
式(12.18): E ^ ( h ) − l n ( 2 / δ ) 2 m ≤ E ( h ) ≤ E ^ ( h ) + l n ( 2 / δ ) 2 m \hat{E}(h)-\sqrt{\frac{ln(2/δ)}{2m}} \leq E(h) \leq \hat{E}(h)+\sqrt{\frac{ln(2/δ)}{2m}} E^(h)2mln(2/δ) E(h)E^(h)+2mln(2/δ)

有引理(12.1)可知, P ( ∣ E ^ ( h ) − E ( h ) ∣ ≥ ε ) ≤ 2 e − 2 m ε 2 P(|\hat{E}(h)-E(h) |\geq ε) \leq 2e^{-2mε^2} P(E^(h)E(h)ε)2e2mε2成立

P ( ∣ E ^ ( h ) − E ( h ) ∣ ≤ ε ) ≤ 1 − 2 e − 2 m ε 2 P(|\hat{E}(h)-E(h) |\leq ε) \leq 1-2e^{-2mε^2} P(E^(h)E(h)ε)12e2mε2

δ = 2 e − 2 m ε 2 δ=2e^{-2mε^2} δ=2e2mε2,则 ε = l n ( 2 / δ ) 2 m ε=\sqrt{\frac{ln(2/δ)}{2m}} ε=2mln(2/δ)

所以 ∣ E ^ ( h ) − E ( h ) ∣ ≤ l n ( 2 / δ ) 2 m |\hat{E}(h)-E(h) |\leq \sqrt{\frac{ln(2/δ)}{2m}} E^(h)E(h)2mln(2/δ) 的概率不小于1-δ
整理得: E ^ ( h ) − l n ( 2 / δ ) 2 m ≤ E ( h ) ≤ E ^ ( h ) + l n ( 2 / δ ) 2 m \hat{E}(h)-\sqrt{\frac{ln(2/δ)}{2m}} \leq E(h) \leq \hat{E}(h)+\sqrt{\frac{ln(2/δ)}{2m}} E^(h)2mln(2/δ) E(h)E^(h)+2mln(2/δ) 以至少1-δ的概率成立。

4.试证明: R d R^d Rd空间中线性超平面构成的假设空间的VC维是d+1。

线性空间超平面公式为 w T x + b = 0 w^Tx+b=0 wTx+b=0,超平面将空间分为二块,即二分类。
取R^d空间中不共超平面的d+1个点,为了简化,假设是各坐标轴基向量和原点。
设A是 ( d + 1 ) ∗ ( d + 1 ) (d+1)*(d+1) (d+1)(d+1)矩阵,第一列是b的系数1,第二列起是各个点的坐标。
X = ∣ 1 0 0 . . . 0 1 1 0 . . . 0 1 0 1 . . . 0 . . . . . . . . . . . . . . . 1 0 0 . . . 1 ∣ , w = ∣ b w 1 w 2 . . . w d ∣ X=\begin{vmatrix}1 & 0 & 0 & ... & 0\\ 1& 1 & 0 & ... & 0\\ 1& 0 & 1 & ... & 0\\...& ... & ... & ... & ...\\ 1& 0 & 0 & ... & 1\end{vmatrix},w=\begin{vmatrix}b\\ w_1\\ w_2\\...\\ w_d\end{vmatrix} X=111...1010...0001...0...............000...1w=bw1w2...wd
要证明的是,对于任意的y,存在w使得 X w = y Xw=y Xw=y成立。
由于X是可逆矩阵,可以得 w = X − 1 y w=X^{-1}y w=X1y使得 X w = y Xw=y Xw=y成立。所以VC维至少是d+1。
由于 R d R^d Rd空间中的d+2个点必然线性相关,将第d+2个点写成前n+1个点的线性组合:
x d + 2 = ∑ i d + 1 p i x i , x_{d+2}=\sum_i^{d+1}p_ix_i, xd+2=id+1pixi
则: y d + 2 = ∑ i d + 1 p i y i y_{d+2}=\sum_i^{d+1}p_iy_i yd+2=id+1piyi
对任意的 y i ( i ≤ d + 1 ) , 取 p i = s i g n ( y i ) , y_i(i \leq d+1),取p_i=sign(y_i), yi(id+1)pi=sign(yi)得到 y d + 2 > 0 y_{d+2}>0 yd+2>0恒成立,所以此时 x d + 2 x_{d+2} xd+2无法被打散。
即VC维小于d+2。
所以 R d R^d Rd空间中线性超平面构成的假设空间的VC维是d+1。

5.试计算决策树桩假设空间的VC维。

如果是非连续属性,通过决策树一次划分无法确定节点个数,可能导致VC维无限大。
仅考虑连续属性单变量的决策树桩。
由于决策树的划分是与坐标轴平行的超平面,显然平面上的2个点是可以被打散的,即VC维大于等于2。
对于平面的3各点,如果其中两个点的连线与一条坐标轴平行,另两个点的连线与另一坐标轴平行。比如(0,0),(0,1),(1,0)三个点,无法通过一个与坐标轴平行的超平面来划分。所以VC维小于3。
所以决策树桩假设空间的VC维是2。

6.决策树分类器的假设空间VC维可以为无穷大。

由于决策树如果不限制伸展,会包含整个假设空间。对任意多的样本,决策树可以使得训练误差为0,所以VC维是无穷大。

7.试证明:最近邻分类器的假设空间VC维为无穷大。

最近邻分类器,也就是1NN,总是会把自己分类成自己的样本分类,所以对任何数目的样本训练误差恒为0。如图所示

8.试证明常数函数c的Rademacher的复杂度为0。

常数函数c的Rademacher的复杂度为 R ^ Z ( C ) = E σ [ 1 m σ i C ( z i ) ] \hat{R}_Z(C)=E_σ[\frac{1}{m}σ_iC(z_i)] R^Z(C)=Eσ[m1σiC(zi)]
其中 σ i σ_i σi是随机变量,以0.5的概率取1,0.5的概率取-1。
所以 E ( σ i ) = 0 E(σ_i)=0 E(σi)=0
R ^ Z ( C ) = E σ [ 1 m ∑ i m σ i C ( z i ) ] = c m ∑ i m E [ σ i ] = 0 \hat{R}_Z(C)=E_σ[\frac{1}{m}\sum_i^mσ_iC(z_i)]=\frac{c}{m}\sum_i^mE[σ_i]=0 R^Z(C)=Eσ[m1imσiC(zi)]=mcimE[σi]=0

9.给定函数空间 F 1 , F 2 , F_1,F_2, F1,F2试证明Rademacher复杂度 R m ( F 1 + F 2 ) ≤ R m ( F 1 ) + R m ( F 2 ) 。 R_m(F_1+F_2) \leq R_m(F_1)+R_m(F_2)。 Rm(F1+F2)Rm(F1)+Rm(F2)

R m ( F 1 + F 2 ) = E Z ∈ Ƶ : ∣ Z ∣ = m [ R ^ Z ( F 1 + F 2 ) ] R_m(F_1+F_2)=E_{Z \in Ƶ:|Z|=m}[\hat{R}_Z(F_1+F_2)] Rm(F1+F2)=EZƵ:Z=m[R^Z(F1+F2)]

R ^ Z ( F 1 + F 2 ) = E σ [ s u p f 1 ∈ F 1 , f 2 ∈ F 2 1 m ∑ i m σ i ( f 1 ( z i ) + f 2 ( z i ) ) ] \hat{R}_Z(F_1+F_2)=E_σ[sup_{f_1 \in F_1,f_2 \in F_2}\frac{1}{m}\sum_i^mσ_i(f_1(z_i)+f_2(z_i))] R^Z(F1+F2)=Eσ[supf1F1,f2F2m1imσi(f1(zi)+f2(zi))]

f 1 ( z i ) f 2 ( z i ) < 0 f_1(z_i)f_2(z_i) < 0 f1(zi)f2(zi)<0时, σ i ( f 1 ( z i ) + f 2 ( z i ) ) < σ i 1 f 1 ( z i ) + σ i 2 f 2 ( z i ) σ_i(f_1(z_i)+f_2(z_i)) < σ_{i1}f_1(z_i)+σ_{i2}f_2(z_i) σi(f1(zi)+f2(zi))<σi1f1(zi)+σi2f2(zi)

f 1 ( z i ) f 2 ( z i ) ≥ 0 f_1(z_i)f_2(z_i) \geq 0 f1(zi)f2(zi)0时, σ i ( f 1 ( z i ) + f 2 ( z i ) ) = σ i 1 f 1 ( z i ) + σ i 2 f 2 ( z i ) σ_i(f_1(z_i)+f_2(z_i)) = σ_{i1}f_1(z_i)+σ_{i2}f_2(z_i) σi(f1(zi)+f2(zi))=σi1f1(zi)+σi2f2(zi)

所以 R ^ Z ( F 1 + F 2 ) ≤ R ^ Z ( F 1 ) + R ^ Z ( F 2 ) \hat{R}_Z(F_1+F_2) \leq \hat{R}_Z(F_1) +\hat{R}_Z(F_2) R^Z(F1+F2)R^Z(F1)+R^Z(F2)

即: R m ( F 1 + F 2 ) ≤ R m ( F 1 ) + R m ( F 2 ) 。 R_m(F_1+F_2) \leq R_m(F_1)+R_m(F_2)。 Rm(F1+F2)Rm(F1)+Rm(F2)

10.考虑定理12.8,试讨论通过交叉验证法来估计学习算法泛化能力的合理性。
K折交叉验证,当K=m时,就成了留一法。
由式(12.59): l ( Ƹ , D ) ≤ l l o o ( Ƹ , D ) + β + ( 4 m β + M ) s q r t l n ( 1 / δ ) 2 m 取 ε = β + ( 4 m β + M ) s q r t l n ( 1 / δ ) 2 m l(Ƹ,D) \leq l_{loo}(Ƹ,D)+β+(4mβ+M)sqrt{\frac{ln(1/δ)}{2m}} 取ε=β+(4mβ+M)sqrt{\frac{ln(1/δ)}{2m}} l(Ƹ,D)lloo(Ƹ,D)+β+(4mβ+M)sqrt2mln(1/δ)ε=β+(4mβ+M)sqrt2mln(1/δ)时,可以得到:

l ( Ƹ , D ) − l l o o ( Ƹ , D ) ≤ ε l(Ƹ,D) - l_{loo}(Ƹ,D) \leq ε l(Ƹ,D)lloo(Ƹ,D)ε以至少1-δ/2的概率成立,所以留一法有不错的泛化能力。
前提条件是Ƹ对于损失函数l满足β均匀稳定性,且β应该是O(1/m)这个量级。
仅拿出一个样本,可以保证很小的β。
随着K的减小,训练用的样本会减少,β逐渐增大,当β超出O(1/m)量级时,交叉验证就变得不合理了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值