斯坦福 CS224W - 笔记 03


半监督节点分类:标签传播和消息传递


1. 基本概念

  • 半监督节点分类:部分有标签,部分无标签,由已知类别节点预测未知标签节点
    在这里插入图片描述

  • 直推式学习:预测前后没有新节点加入(标签传播

  • 归纳式学习:训练后需要处理新节点,让模型泛化到新节点(GAT、GraphSage)

  • 例如:在社交网络中,自己的类别既取决于自己,也取决于周围人的看法
    在这里插入图片描述

  • 应用:词性标注、OCR、实体统一

  • 标签传播方法(直推式)通过消息传递机制,用周围人的标签预测自身标签,不需要将节点变成向量,因此不是图嵌入,也不是表示学习,而是近朱者赤近墨者黑,物以类聚人以群分

  • Homophily:具有相似属性特征的节点更可能相连且具

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值