题目描述
Given a hash table of size N, we can define a hash function H(x)=x%N. Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.
However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤1000), which is the size of the hash table. The next line contains N integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.
Output Specification:
For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.
Sample Input:
11
33 1 13 12 34 38 27 22 32 -1 21
Sample Output:
1 13 12 21 33 34 38 27 22 32
代码
#include<stdio.h>
#include<stdlib.h>
#define MAXN 1000
int HashTable[MAXN]; /* 用来读取已经建立好的散列表 */
int reHashTable[MAXN]; /* reHashTable数组用来模拟建立散列表过程 */
<

根据给定的散列表状态,利用线性探测解决冲突的方法,你需要反向构建输入序列。当存在多种可能性时,选择最小的数。输入包括散列表的大小和状态,输出是重建的输入序列。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



