JVM 面试 4 连炮,你能顶住么?

下面总结了 JVM 的 4 个问题,看你能顶住么?

1、JVM的内存区域是怎么划分的?

2、OOM可能发生在哪些区域上?

3、堆内存结构是怎么样的?

4、常用的性能监控与问题定位工具有哪些?

1、JVM的内存区域是怎么划分的?

JVM的内存划分中,有部分区域是线程私有的,有部分是属于整个JVM进程;有些区域会抛出OOM异常,有些则不会,了解JVM的内存区域划分以及特征,是定位线上内存问题的基础。那么JVM内存区域是怎么划分的呢?

首先是程序计数器(Program Counter Register),在JVM规范中,每个线程都有自己的程序计数器。这是一块比较小的内存空间,存储当前线程正在执行的Java方法的JVM指令地址,即字节码的行号。如果正在执行Native方法,则这个计数器为空。该内存区域是唯一一个在Java虚拟机规范中没有规定任何OOM情况的内存区域。

第二,Java虚拟机栈(Java Virtal Machine Stack),同样也是属于线程私有区域,每个线程在创建的时候都会创建一个虚拟机栈,生命周期与线程一致,线程退出时,线程的虚拟机栈也回收。虚拟机栈内部保持一个个的栈帧,每次方法调用都会进行压栈,JVM对栈帧的操作只有出栈和压栈两种,方法调用结束时会进行出栈操作。

该区域存储着局部变量表,编译时期可知的各种基本类型数据、对象引用、方法出口等信息。

第三,本地方法栈(Native Method Stack)与虚拟机栈类似,本地方法栈是在调用本地方法时使用的栈,每个线程都有一个本地方法栈。

第四,堆(Heap),几乎所有创建的Java对象实例,都是被直接分配到堆上的。堆被所有的线程所共享,在堆上的区域,会被垃圾回收器做进一步划分,例如新生代、老年代的划分。Java虚拟机在启动的时候,可以使用“Xmx”之类的参数指定堆区域的大小。

第五,方法区(Method Area)。方法区与堆一样,也是所有的线程所共享,存储被虚拟机加载的元(Meta)数据,包括类信息、常量、静态变量、即时编译器编译后的代码等数据。这里需要注意的是运行时常量池也在方法区中。

根据Java虚拟机规范的规定,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。由于早期HotSpot JVM的实现,将CG分代收集拓展到了方法区,因此很多人会将方法区称为永久代。Oracle JDK8中已永久代移除永久代,同时增加了元数据区(Metaspace)。

第六,运行时常量池(Run-Time Constant Pool),这是方法区的一部分,受到方法区内存的限制,当常量池无法再申请到内存时,会抛出OutOfMemoryError异常。

在Class文件中,除了有类的版本、方法、字段、接口等描述信息外,还有一项信息是常量池。每个Class文件的头四个字节称为Magic Number,它的作用是确定这是否是一个可以被虚拟机接受的文件;接着的四个字节存储的是Class文件的版本号。紧挨着版本号之后的,就是常量池入口了。常量池主要存放两大类常量:

  • 字面量(Literal),如文本字符串、final常量值

  • 符号引用,存放了与编译相关的一些常量,因为Java不像C++那样有连接的过程,因此字段方法这些符号引用在运行期就需要进行转换,以便得到真正的内存入口地址。

class文件中的常量池,也称为静态常量池,JVM虚拟机完成类装载操作后,会把静态常量池加载到内存中,存放在运行时常量池。

第七,直接内存(Direct Memory),直接内存并不属于Java规范规定的属于Java虚拟机运行时数据区的一部分。Java的NIO可以使用Native方法直接在java堆外分配内存,使用DirectByteBuffer对象作为这个堆外内存的引用。

下面这张图,反映了运行中的Java进程内存占用情况:

2、OOM可能发生在哪些区域上?

根据javadoc的描述,OOM是指JVM的内存不够用了,同时垃圾收集器也无法提供更多的内存。从描述中可以看出,在JVM抛出OutOfMemoryError之前,垃圾收集器一般会出马先尝试回收内存。

从上面分析的Java数据区来看,除了程序计数器不会发生OOM外,哪些区域会发生OOM的情况呢?

第一,堆内存。堆内存不足是最常见的发送OOM的原因之一,如果在堆中没有内存完成对象实例的分配,并且堆无法再扩展时,将抛出OutOfMemoryError异常。当前主流的JVM可以通过-Xmx和-Xms来控制堆内存的大小,发生堆上OOM的可能是存在内存泄露,也可能是堆大小分配不合理。

第二,Java虚拟机栈和本地方法栈,这两个区域的区别不过是虚拟机栈为虚拟机执行Java方法服务,而本地方法栈则为虚拟机使用到的Native方法服务,在内存分配异常上是相同的。

在JVM规范中,对Java虚拟机栈规定了两种异常:1.如果线程请求的栈大于所分配的栈大小,则抛出StackOverFlowError错误,比如进行了一个不会停止的递归调用;2. 如果虚拟机栈是可以动态拓展的,拓展时无法申请到足够的内存,则抛出OutOfMemoryError错误。

第三,直接内存。直接内存虽然不是虚拟机运行时数据区的一部分,但既然是内存,就会受到物理内存的限制。在JDK1.4中引入的NIO使用Native函数库在堆外内存上直接分配内存,但直接内存不足时,也会导致OOM。

第四,方法区。随着Metaspace元数据区的引入,方法区的OOM错误信息也变成了“java.lang.OutOfMemoryError:Metaspace”。对于旧版本的Oracle JDK,由于永久代的大小有限,而JVM对永久代的垃圾回收并不积极,如果往永久代不断写入数据,例如String.Intern()的调用,在永久代占用太多空间导致内存不足,也会出现OOM的问题,对应的错误信为“java.lang.OutOfMemoryError:PermGen space”

3、堆内存结构是怎么样的?

可以借助一些工具来了解JVM的内存内容,具体到特定的内存区域,应该用什么工具去定位呢?

  • 图形化工具。图形化工具的优点是直观,连接到Java进程后,可以显示堆内存、堆外内存的使用情况,类似的工具有JConsole,VisualVm等。

  • 命令行工具。这类工具可以在运行时进行查询,包括jstat,jmap等,可以对堆内存、方法区等进行查看。定位线上问题时也多会使用这些工具。jmap也可以生成堆转储文件(Heap Dump)文件,如果是在linux上,可以将堆转储文件拉到本地来,使用Eclipse MAT进行分析,也可以使用jhap进行分析。

关于内存的监控与诊断,在后面会进行深入了解。现在来看下一个问题:堆内的结构是怎么的呢?深入浅出 Java 中 JVM 内存管理,这篇推荐看下。

站在垃圾收集器的角度来看,可以把内存分为新生代与老年代。内存的分配规则取决于当前使用的是哪种垃圾收集器的组合,以及内存相关的参数配置。往大的方向说,对象优先分配在新生代的Eden区域,而大对象直接进入老年代。

第一, 新生代的Eden区域,对象优先分配在该区域,同时JVM可以为每个线程分配一个私有的缓存区域,称为TLAB(Thread Local Allocation Buffer),避免多线程同时分配内存时需要使用加锁等机制而影响分配速度。TLAB在堆上分配,位于Eden中。TLAB的结构如下:

// ThreadLocalAllocBuffer: a descriptor for thread-local storage used by
// the threads for allocation.
// It is thread-private at any time, but maybe multiplexed over
// time across multiple threads. The park()/unpark() pair is
// used to make it avaiable for such multiplexing.
class ThreadLocalAllocBuffer: public CHeapObj<mtThread> {
  friend class VMStructs;
private:
  HeapWord* _start; // address of TLAB
  HeapWord* _top; // address after last allocation
  HeapWord* _pf_top; // allocation prefetch watermark
  HeapWord* _end; // allocation end (excluding alignment_reserve)
  size_t    _desired_size; // desired size (including alignment_reserve)
  size_t    _refill_waste_limit; // hold onto tlab if free() is larger than this

从本质上来说,TLAB的管理是依靠三个指针:start、end、top。start与end标记了Eden中被该TLAB管理的区域,该区域不会被其他线程分配内存所使用,top是分配指针,开始时指向start的位置,随着内存分配的进行,慢慢向end靠近,当撞上end时触发TLAB refill。

因此内存中Eden的结构大体为:

第二、新生代的Survivor区域。当Eden区域内存不足时会触发Minor GC,也称为新生代GC,在Minor GC存活下来的对象,会被复制到Survivor区域中。我认为Survivor区的作用在于避免过早触发Full GC。如果没有Survivor,Eden区每进行一次Minor GC都把对象直接送到老年代,老年代很快便会内存不足引发Full GC。

新生代中有两个Survivor区,我认为两个Survivor的作用在于提高性能,避免内存碎片的出现。在任何时候,总有一个Survivor是empty的,在发生Minor GC时,会将Eden及另一个的Survivor的存活对象拷贝到该empty Survivor中,从而避免内存碎片的产生。新生代的内存结构大体为:

第三、老年代。老年代放置长生命周期的对象,通常是从Survivor区域拷贝过来的对象,不过当对象过大的时候,无法在新生代中用连续内存的存放,那么这个大对象就会被直接分配在老年代上。一般来说,普通的对象都是分配在TLAB上,较大的对象,直接分配在Eden区上的其他内存区域,而过大的对象,直接分配在老年代上。

第四、永久代。如前面所说,在早起的Hotspot JVM中有老年代的概念,老年代用于存储Java类的元数据、常量池、Intern字符串等。在JDK8之后,就将老年代移除,而引入元数据区的概念。

第五、Vritual空间。前面说过,可以使用Xms与Xmx来指定堆的最小与最大空间。如果Xms小于Xmx,堆的大小不会直接扩展到上限,而是留着一部分等待内存需求不断增长时,再分配给新生代。Vritual空间便是这部分保留的内存区域。

关注微信公众号:Java技术栈,在后台回复:JVM,可以获取我整理的 N 篇最新JVM 教程,都是干货。

那么综上所述,可以画出Java堆内的内存结构大体为:

通过一些参数,可以来指定上述的堆内存区域的大小:

  • -Xmx value 指定最大的堆大小

  • -Xms value 指定初始的最小堆大小

  • -XX:NewSize = value 指定新生代的大小

  • -XX:NewRatio = value 老年代与新生代的大小比例。默认情况下,这个比例是2,也就是说老年代是新生代的2倍大。老年代过大的时候,Full GC的时间会很长;老年代过小,则很容易触发Full GC,Full GC频率过高,这就是这个参数会造成的影响。

  • -XX:SurvivorRation = value . 设置Eden与Srivivor的大小比例,如果该值为8,代表一个Survivor是Eden的1/8,是整个新生代的1/10。

4、常用的性能监控与问题定位工具有哪些?

在系统的性能分析中,CPU、内存与IO是主要的关注项。很多时候服务出现问题,在这三者上会体现出现,比如CPU飙升,内存不足发生OOM等,这时候需要使用对应的工具,来对性能进行监控,对问题进行定位。

对于CPU的监控,首先可以使用top命令来进行查看,下面是使用top查看负载的一个截图:

load average 代表1分钟、5分钟、15分钟的系统平均负载,从这三个数字,可以判断系统负荷是大还是小。当CPU完全空闲的时候,平均负荷为0;当CPU工作量饱和的时候,平均负荷为1。

因此 load average 这三个数值越低,代表系统负荷越小,那么什么时候能看出系统负荷比较重呢?这篇文章(Understanding Linux CPU Load – when should you be worried)里解释得非常通俗。如果电脑里只有一个CPU,把CPU看成一条单行桥,桥上只有一个车道,所有的车都必须从这个桥上通过。那么

系统负荷为0,代表桥上一辆车也没有

系统负荷0.5,意味着桥上一半路段上有车

系统负荷1,意味着桥上道路已经被车占满

系统负荷1.7,代表着在桥上车子已经满了(100%),同时还有70%的车子在等待从桥上通过:

从top命令的截图中可以看到这三个值机器的load average非常低。如果这三个值非常高,比如超过了50%或60%,就应当引起注意。从时间维度上来说,如果发现CPU负荷慢慢升高,也需要警惕。

其他的内存、CPU等性能监控工具的使用,以一张脑图来展示:

具体的使用方式可以参考从一次线上故障思考Java问题定位思路。

参考

  • https://www.cnblogs.com/dreamroute/p/5946272.html

  • https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.5

  • https://www.cnblogs.com/Kidezyq/p/8040338.html

  • https://www.cnblogs.com/baihuitestsoftware/articles/6405580.html

  • https://www.jianshu.com/p/cd85098cca39

  • http://www.ruanyifeng.com/blog/2011/07/linux_load_average_explained.html

作者:melonstreet,

www.cnblogs.com/QG-whz/p/9636366.html

推荐阅读
YYYY-MM-DD的黑锅,我们不背!
什么是工程师文化?
2020,请对我好点!

编程·思维·职场
欢迎扫码关注

《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值