论调用约定

感谢原作者:http://www.xiaozhou.net/ReadNews.asp?NewsID=933


在C语言中,假设我们有这样的一个函数:

int function(int a,int b)

调用时只要用result = function(1,2)这样的方式就可以使用这个函数。但是,当高级语言被编译成计算机可以识别的机器码时,有一个问题就凸现出来:在CPU中,计算 机没有办法知道一个函数调用需要多少个、什么样的参数,也没有硬件可以保存这些参数。也就是说,计算机不知道怎么给这个函数传递参数,传递参数的工作必须 由函数调用者和函数本身来协调。为此,计算机提供了一种被称为栈的数据结构来支持参数传递。

栈是一种先进后出的数据结构,栈有一个存储区、一个栈顶指针。栈顶指针指向堆栈中第一个可用的数据项(被称为栈顶)。用户可以在栈顶上方向栈中加入 数据,这个操作被称为压栈(Push),压栈以后,栈顶自动变成新加入数据项的位置,栈顶指针也随之修改。用户也可以从堆栈中取走栈顶,称为弹出栈 (pop),弹出栈后,栈顶下的一个元素变成栈顶,栈顶指针随之修改。

函数调用时,调用者依次把参数压栈,然后调用函数,函数被调用以后,在堆栈中取得数据,并进行计算。函数计算结束以后,或者调用者、或者函数本身修改堆栈,使堆栈恢复原装。

在参数传递中,有两个很重要的问题必须得到明确说明:

  • 当参数个数多于一个时,按照什么顺序把参数压入堆栈
  • 函数调用后,由谁来把堆栈恢复原装

在高级语言中,通过函数调用约定来说明这两个问题。常见的调用约定有:

  • stdcall
  • cdecl
  • fastcall
  • thiscall
  • naked call

stdcall调用约定

stdcall很多时候被称为pascal调用约定,因为pascal是早期很常见的一种教学用计算机程序设计语言,其语法严谨,使用的函数调用约 定就是stdcall。在Microsoft C++系列的C/C++编译器中,常常用PASCAL宏来声明这个调用约定,类似的宏还有WINAPI和CALLBACK。

stdcall调用约定声明的语法为(以前文的那个函数为例):

int __stdcall function(int a,int b)

stdcall的调用约定意味着:1)参数从右向左压入堆栈,2)函数自身修改堆栈 3)函数名自动加前导的下划线,后面紧跟一个@符号,其后紧跟着参数的尺寸

以上述这个函数为例,参数b首先被压栈,然后是参数a,函数调用function(1,2)调用处翻译成汇编语言将变成:

 
 

push 2 第二个参数入栈
push 1 第一个参数入栈
call function 调用参数,注意此时自动把cs:eip入栈

而对于函数自身,则可以翻译为:

 
 

push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出时恢复
mov ebp,esp 保存堆栈指针
mov eax,[ebp + 8H] 堆栈中ebp指向位置之前依次保存有ebp,cs:eip,a,b,ebp +8指向a
add eax,[ebp + 0CH] 堆栈中ebp + 12处保存了b
mov esp,ebp 恢复esp
pop ebp
ret 8

而在编译时,这个函数的名字被翻译成_function@8

注意不同编译器会插入自己的汇编代码以提供编译的通用性,但是大体代码如此。其中在函数开始处保留esp到ebp中,在函数结束恢复是编译器常用的方法。

从函数调用看,2和1依次被push进堆栈,而在函数中又通过相对于ebp(即刚进函数时的堆栈指针)的偏移量存取参数。函数结束后,ret 8表示清理8个字节的堆栈,函数自己恢复了堆栈。

cdecl调用约定

cdecl调用约定又称为C调用约定,是C语言缺省的调用约定,它的定义语法是:

 
 

int function (int a ,int b) //不加修饰就是C调用约定
int __cdecl function(int a,int b)//明确指出C调用约定

在写本文时,出乎我的意料,发现cdecl调用约定的参数压栈顺序是和stdcall是一样的,参数首先由有向左压入堆栈。所不同的是,函数本身不 清理堆栈,调用者负责清理堆栈。由于这种变化,C调用约定允许函数的参数的个数是不固定的,这也是C语言的一大特色。对于前面的function函数,使 用cdecl后的汇编码变成:

 
 

调用处
push 1
push 2
call function
add esp,8 注意:这里调用者在恢复堆栈
被调用函数_function处
push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出时恢复
mov ebp,esp 保存堆栈指针
mov eax,[ebp + 8H] 堆栈中ebp指向位置之前依次保存有ebp,cs:eip,a,b,ebp +8指向a
add eax,[ebp + 0CH] 堆栈中ebp + 12处保存了b
mov esp,ebp 恢复esp
pop ebp
ret 注意,这里没有修改堆栈

MSDN中说,该修饰自动在函数名前加前导的下划线,因此函数名在符号表中被记录为_function,但是我在编译时似乎没有看到这种变化。

由于参数按照从右向左顺序压栈,因此最开始的参数在最接近栈顶的位置,因此当采用不定个数参数时,第一个参数在栈中的位置肯定能知道,只要不定的参数个数能够根据第一个后者后续的明确的参数确定下来,就可以使用不定参数,例如对于CRT中的sprintf函数,定义为:

int sprintf(char* buffer,const char* format,...)

由于所有的不定参数都可以通过format确定,因此使用不定个数的参数是没有问题的。

fastcall

fastcall调用约定和stdcall类似,它意味着:

  • 函数的第一个和第二个DWORD参数(或者尺寸更小的)通过ecx和edx传递,其他参数通过从右向左的顺序压栈
  • 被调用函数清理堆栈
  • 函数名修改规则同stdcall

其声明语法为:int fastcall function(int a,int b)

thiscall

thiscall是唯一一个不能明确指明的函数修饰,因为thiscall不是关键字。它是C++类成员函数缺省的调用约定。由于成员函数调用还有一个this指针,因此必须特殊处理,thiscall意味着:

  • 参数从右向左入栈
  • 如果参数个数确定,this指针通过ecx传递给被调用者;如果参数个数不确定,this指针在所有参数压栈后被压入堆栈。
  • 对参数个数不定的,调用者清理堆栈,否则函数自己清理堆栈

为了说明这个调用约定,定义如下类和使用代码:

class A
{
public:
   int function1(int a,int b);
   int function2(int a,...);
};
int A::function1 (int a,int b)
{
   return a+b;
}
#include
int A::function2(int a,...)
{
   va_list ap;
   va_start(ap,a);
   int i;
   int result = 0;
   for(i = 0 ; i < a ; i ++)
   {
     result += va_arg(ap,int);
   }
   return result;
}
void callee()
{
   A a;
   a.function1 (1,2);
   a.function2(3,1,2,3);
}

callee函数被翻译成汇编后就变成:

 
 

//函数function1调用
0401C1D push 2
00401C1F push 1
00401C21 lea ecx,[ebp-8]
00401C24 call function1 注意,这里this没有被入栈
//函数function2调用
00401C29 push 3
00401C2B push 2
00401C2D push 1
00401C2F push 3
00401C31 lea eax,[ebp-8] 这里引入this指针
00401C34 push eax
00401C35 call function2
00401C3A add esp,14h

可见,对于参数个数固定情况下,它类似于stdcall,不定时则类似cdecl

naked call

这是一个很少见的调用约定,一般程序设计者建议不要使用。编译器不会给这种函数增加初始化和清理代码,更特殊的是,你不能用return返回返回值,只能用插入汇编返回结果。这一般用于实模式驱动程序设计,假设定义一个求和的加法程序,可以定义为:

__declspec(naked) int  add(int a,int b)
{
__asm mov eax,a
__asm add eax,b
__asm ret
}

注意,这个函数没有显式的return返回值,返回通过修改eax寄存器实现,而且连退出函数的ret指令都必须显式插入。上面代码被翻译成汇编以后变成:

 
 

mov eax,[ebp+8]
add eax,[ebp+12]
ret 8

注意这个修饰是和__stdcall及cdecl结合使用的,前面是它和cdecl结合使用的代码,对于和stdcall结合的代码,则变成:

__declspec(naked) int __stdcall function(int a,int b)
{
__asm mov eax,a
__asm add eax,b
__asm ret 8 //注意后面的8
}

至于这种函数被调用,则和普通的cdecl及stdcall调用函数一致。

函数调用约定导致的常见问题

如果定义的约定和使用的约定不一致,则将导致堆栈被破坏,导致严重问题,下面是两种常见的问题:

  1. 函数原型声明和函数体定义不一致
  2. DLL导入函数时声明了不同的函数约定

以后者为例,假设我们在dll种声明了一种函数为:

__declspec(dllexport) int func(int a,int b);//注意,这里没有stdcall,使用的是cdecl

使用时代码为:

      typedef int (*WINAPI DLLFUNC)func(int a,int b);
hLib = LoadLibrary(...);
DLLFUNC func = (DLLFUNC)GetProcAddress(...)//这里修改了调用约定
result = func(1,2);//导致错误

由于调用者没有理解WINAPI的含义错误的增加了这个修饰,上述代码必然导致堆栈被破坏,MFC在编译时插入的checkesp函数将告诉你,堆栈被破坏了。

 
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值