Educational Codeforces Round 20 c Maximal GCD

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given positive integer number n. You should create such strictly increasing sequence of k positive numbers a1, a2, ..., ak, that their sum is equal to n and greatest common divisor is maximal.

Greatest common divisor of sequence is maximum of such numbers that every element of sequence is divisible by them.

If there is no possible sequence then output -1.

Input

The first line consists of two numbers n and k (1 ≤ n, k ≤ 1010).

Output

If the answer exists then output k numbers — resulting sequence. Otherwise output -1. If there are multiple answers, print any of them.

Examples
Input
Copy
6 3
Output
Copy
1 2 3
Input
Copy
8 2
Output
Copy
2 6
Input
Copy
5 3
Output
Copy
-1

题目大意:

给一个数n,然后让你找到一个k个数的严格递增的序列。使得k个数的和等于n,而且这k个数的最大公约数最大


思路:

num=k*(k+1)/2,首先判断num与n的大小,如果大于n,那么就输出-1.这里的num会爆long long.所以需要两个判断条件.

之后从1到sqrt(n)进行扫描,先判断能否整除。如果i>=num,那么就找到了这个序列,1,2,3,。。。k+i-num.然后这个序列乘以(n/i)输出结束.如果i始终小于num,那么就记录1,2,3,。。。k+(n/i)-num这个序列,然后这个序列乘以i,每次扫描时,都要更新这个序列。最后输出最后更新的这个序列

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#define ll long long
using namespace std;
const int inf=0x3f3f3f3f;
const int N =2e5+5;
ll g[1000005];//因为一个内存,wa了1发。
int main()
{
    ll n,k;
    cin>>n>>k;
    ll num=(k+1)*k/2;//超ll,wa 1发
    if(2*sqrt(n)<k)
    {

        cout<<-1<<endl;
        return 0;
    }
     if(num>n)
       {

        cout<<-1<<endl;
        return 0;
       }
    int flag=0;
    for(int i=1;i<=sqrt(n);i++)
    {
        if(n%i==0)
        {
            if(i>=num)//如果i>=num,那么就找到了这个序列,1,2,3,。。。k+i-num.然后这个序列乘以(n/i),输出结束。
            {
                ll s2=n/i;
                flag=1;
                for(int j=1;j<k;j++)
               {
                 cout<<j*s2<<' ';
               }
                cout<<(k+i-num)*s2<<endl;
                break;
            }
            else
            if(n/i>=num)//如果i小于num,那么就记录1,2,3,。。。k+(n/i)-num这个序列,然后这个序列乘以i,每次扫描时,都要更新这个序列
            {
                ll s1=n/i;
                for(int j=1;j<k;j++)
               {
                 g[j]=j*i;
               }
               g[k]=(k+s1-num)*i;
            }
        }
    }
    if(!flag)
    {
        for(int j=1;j<=k;j++)
               {
                 cout<<g[j]<<' ';
               }
                cout<<endl;
    }
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页