Coder
题意:
有三种类型的操作,(1)."add x",表示往集合里添加数x。(2).“del x”表示将集合中数x删除。(3).“sum”求出从小到大排列的集合中下标模5为3的数的和。集合中的数都是唯一的。
思路:这题巧妙的地方在于先离线输入,然后离散化。输入的数字按照从小到大排序,然后作为线段树的叶子结点。每个结点包括两个部分,一是该结点包含的数字个数,二是按照区间内模5的余数分组求和。当需要向上pushup时,左子树的区间不变,而右子树的区间内,每个数字的位置发生改变,一开始为i,之后变为i+cnt(cnt表示左子树区间内数字个数)
代码:
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, n) for (int i = 0; i < n; i++)
#define debug puts("===============")
typedef long long ll;
using namespace std;
const int maxn = 100200;
ll sum[maxn << 2][5];
int cnt[maxn << 2];
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
int n, tot, op[maxn], a[maxn];
char str[maxn][10];
void pushup(int rt) {
cnt[rt] = cnt[rt << 1] + cnt[rt << 1 | 1];
int p = cnt[rt << 1];
for (int i = 0; i < 5; i++) {
sum[rt][i] = sum[rt << 1][i] + sum[rt << 1 | 1][((i - p) % 5 + 5) % 5];
}
//cout<<rt<<" "<<cnt[rt]<<endl;
}
void update(int pos, int x, int l, int r, int rt) {
if (l == r) {
if (x == 1) {
sum[rt][1] = a[pos - 1];
cnt[rt] = 1;
} else {
sum[rt][1] = 0;
cnt[rt] = 0;
}
return ;
}
int m = (l + r) >> 1;
if (pos <= m) update(pos, x, lson);
else update(pos, x, rson);
pushup(rt);
}
void build(int l, int r, int rt) {
for (int i = 0; i < 5; i++) sum[rt][i] = 0;
cnt[rt] = 0;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
int main () {
while(~scanf("%d", &n)) {
tot = 0;
for (int i = 0; i < n; i++) {
scanf("%s", str[i]);
if (str[i][0] != 's') {
scanf("%d", op + i);
a[tot++] = op[i];
}
}
sort(a, a + tot);
tot = unique(a, a + tot) - a;
build(1, tot, 1);
for (int i = 0; i < n; i++) {
if (str[i][0] == 's') printf("%I64d\n", sum[1][3]);
else {
int pos = lower_bound(a, a + tot, op[i]) - a + 1;
if (str[i][0] == 'a') update(pos, 1, 1, tot, 1);
else update(pos, -1, 1, tot, 1);
}
}
}
return 0;
}<strong>
</strong>