HDU 4862 Jump
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4862
题意:给定一个N*M的矩阵,矩阵里面为0~9的数字。现在规定从一个点可以跳到它正下方和正右方的点,花费的费用为曼哈顿距离 - 1。如果在跳的过程中,两个点的数字相同,那么将得到该点的数字。规定可以从任意点开始跳,每个点只能经过1次。最多可以选择K个点来作为起点进行跳跃。问能否经过所有的点,如果可以,那么花费的费用是多少。
思路:
如果是最小路径覆盖,那么很容易构造图。但这里还有个限制是要在K次走完所有的点。
最小K路径覆盖的模型,用费用流或者KM算法解决,构造二部图,X部有N*M个节点,源点向X部每个节点连一条边,流量1,费用0,Y部有N*M个节点,每个节点向汇点连一条边,流量1,费用0,如果X部的节点x可以在一步之内到达Y部的节点y,那么就连边x->y,费用为从x格子到y格子的花费能量减去得到的能量,流量1,再在X部增加一个新的节点,表示可以从任意节点出发K次,源点向其连边,费用0,流量K,这个点向Y部每个点连边,费用0,流量1,最后用这个图跑最小费用最大流,如果满流就是存在解,反之不存在,最小费用的相反数就是可以获得的最大能量。
代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1 << 30)
#define LINF (1LL << 60)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
#define mkp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
int N, M, K;
char mp[15][15];
const int maxn = 555;
const int maxm = 5000;
struct node {
int v, cap, nxt, cost;
} e[maxm * 2];
int g[maxn], cnt, st, ed, n, m;
int ans, flow;
void add(int u, int v, int cap, int cost) {
e[++cnt].v = v;
e[cnt].cap = cap;
e[cnt].cost = cost;
e[cnt].nxt = g[u];
g[u] = cnt;
e[++cnt].v = u;
e[cnt].cap = 0;
e[cnt].cost = -cost;
e[cnt].nxt = g[v];
g[v] = cnt;
}
void init() {
cnt = 1;
ans = flow = 0;
st = N * M * 2;
ed = st + 1;
memset(g, 0, sizeof(g));
// 加边
n = N * M;
int tmp = ed + 1;
add(st, tmp, K, 0); //最小K路径覆盖需要另外构造一个点,从汇点连流量为K的边
for (int i = 0; i < n; i++) {
add(st, i, 1, 0); //
add(i + n, ed, 1, 0);
add(tmp, i + n, 1, 0);
}
int c;
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
int now = i * M + j;
for (int l = i + 1; l < N; l++) {
c = l - i - 1;
if (mp[i][j] == mp[l][j]) c -= (mp[i][j] -'0');
add(now, l * M + j + n, 1, c);
}
for (int l = j + 1; l < M; l++) {
c = l - j - 1;
if (mp[i][j] == mp[i][l]) c -= (mp[i][j] - '0');
add(now, i * M + l + n, 1, c);
}
}
}
n = tmp;
}
int dis[maxn], que[maxn], pre[maxn];
bool vis[maxn];
bool spfa() {
int font = 0, rear = 1;
for(int i = 0; i <= n; i ++) {
dis[i] = INF;
vis[i] = false;
}
dis[st] = 0;
que[0] = st;
vis[st] = true;
while(rear != font) {
int u = que[font++];
font %= n;
vis[u] = false;
for(int i = g[u]; i; i = e[i].nxt) {
int v = e[i].v;
if(e[i].cap && dis[v] > dis[u] + e[i].cost) {
dis[v] = dis[u] + e[i].cost;
pre[v] = i;
if(!vis[v]) {
vis[v] = true;
que[rear++] = v;
rear %= n;
}
}
}
}
if(dis[ed] == INF) return false;
return true;
}
void augment() {
int u, p, mi = INF;
for(u = ed; u != st; u = e[p ^ 1].v) {
p = pre[u];
mi = min(mi, e[p].cap);
}
for(u = ed; u != st; u = e[p ^ 1].v) {
p = pre[u];
e[p].cap -= mi;
e[p ^ 1].cap += mi;
ans += mi * e[p].cost; // cost记录的为单位流量费用,必须得乘以流量。
}
flow += mi;
}
int MCMF() {
init();
while(spfa()) augment();
if (flow != N * M) return -1;
return -ans;
}
int main () {
int T, cas = 1;
scanf("%d", &T);
while(T--) {
scanf("%d%d%d", &N, &M, &K);
for (int i = 0; i < N; i++) scanf("%s", mp[i]);
int dd = MCMF();
printf("Case %d : %d\n", cas++, dd);
}
return 0;
}