简单介绍
是分布式的基于发布/订阅模式的消息队列(特点是先进先出),也叫消息中间件
kafka中的常用名词解释
-
Producer:即生产者,向Kafka Broker发消息的客户端
-
Broker:kafka集群包含一个或多个服务器,每个服务器节点称为一个broker。一个Broker可以存在多个topic
-
Topic:消息的主题,是逻辑存在的。Kafka可以同时负责多个topic的分发。
-
Partition:分区,每个partition都是一个有序的队列,partition中的每条消息都会被分配一个有序的id(offset)。分区对kafka集群的好处是:实现负载均衡,提高kafka的吞吐量,分区对于消费者来说,可以提高并发度,提升效率。
-
Replication:副本,每一个分区都有多个副本,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader绝对是在不同的机器上。
-
Message:每一条发送的消息主体。
-
Consumer:消费者,从Kafka Broker取消息的客户端
-
Consumer Group:消费者组,我们可以将多个消费者组成一个消费者组。在kafka的设计中同一个分区的数据只能被消费者组中的某一个消费者消费,一个消费者组当中,只能有对应分区数的消费者来消费同一个主题的不同分区的数据,这也是为了提高kafka的吞吐量!
-
Offset:消息在partition中的偏移量。每一条消息在partition都有唯一的偏移量,消息者可以指定偏移量来指定要消费的消息。
-
Leader:分区中的主副本,与生产者、消费者进行通信
-
Follower:分区中的从副本,负责同步leader中的消息(从leader中pull消息)
-
AR Assigned Replicas 同步副本,AR=ISR+OSR
-
ISR In-Sync Replicas,是指及时副本同步列表,消息同步的频率或者时效达到一定要求副本。
-
OSR Outof-Sync Replicas 消息同步存在滞后情况的副本集合
kafka的优势
-
多生产者
-
多消费者
-
基于磁盘的数据存储
-
灵活的伸缩性
-
高性能
kafka的特性
-
高吞吐量,低延迟:每秒可以处理几十万条消息,延迟最低只有几毫秒
-
可扩展性
-
持久性,可靠性:消息持久化到本地磁盘,并且支持数据备份防止数据丢失
-
容错性:允许集群中节点失败(副本数量为n,则允许n-1个节点失败)
-
高并发:支持多个客户端同时读写
如果往不存在的topic写数据,能不能写入成功呢?
kafka会自动创建topic,分区和副本的数量根据默认配置都是1。
kafka分区命名规则
主题名-分区编号(0---(分区数-1)) 主题是逻辑存在,分区是物理存在
生产和消费的特点
生产者生产数据,消费者消费的数据只跟leader进行通信,follower作为备份存在,follower当中的数据是从leader当中进行拉取备份。如果leder宕机,follower会通过选举机制上位成为leader,和生产者、消费者进行通信。
同一时刻,一个分区当中的数据只能被一个消费者组下面的一个消费者所消费。
同一时刻,一个消费者组当中,只能有对应分区数的消费者来消费。
在消费者不饱和的情况下,一个消费者是可以去消费多个分区的数据的。
偏移量
每个partition都是一个有序的队列,partition中的每条消息都会被分配一个有序的id(offset)
每个分区中存在一个偏移量,用来记录消费者消费的位置,偏移量永久存在。
kafka分区写入策略
所谓分区写入策略,就是生产者将数据写入到kafka主题后,kafka如何将数据分配到不同分区中的策略
常见的有三种策略,轮询策略,随机策略,和按键保存策略。其中轮询策略是默认的分区策略,而随机策略则是较老版本的分区策略,不过由于其分配的均衡性不如轮询策略,故而后来改成了轮询策略为默认策略。
1. 轮询策略
- 默认的策略,也是使用最多的策略,可以最大限度保证所有消息平均分配到一个分区
- 如果在生产消息时,key为 null,则使用轮询算法均衡地分配分区
2. 随机策略
每次都随机地将消息分配到每个分区。在较早的版本,默认的分区策略就是随机策略,也是为了将消息均衡地写入到每个分区。但后续轮询策略表现更佳,所以基本上很少会使用随机策略。
3.按键分配策略
有可能会出现数据倾斜,例如:某个 key 包含了大量的数据,因为key值一样,所有所有的数据将都分配到一个分区中,造成该分区的消息数量远大于其他的分区。
轮询策略、随机策略都会导致一个问题,生产到 Kafka 中的数据是乱序存储的。而按 key 分区可以一定程度上实现数据有序存储——也就是局部有序,但这又可能会导致数据倾斜,所以在实际生产环境中要结合实际情况来做取舍。