Kafka简介

Kafka是一个分布式消息中间件,支持发布/订阅模式,具有高吞吐、低延迟、持久化、可扩展性和容错性等特性。文章详细解释了Kafka中的Producer、Broker、Topic、Partition、Replication等核心概念,以及分区命名规则、生产和消费特点、偏移量和分区写入策略。此外,还提到Kafka会自动创建主题,且默认分区和副本数量为1,允许在不存在的topic上写入数据。
摘要由CSDN通过智能技术生成

简单介绍

kafka中的常用名词解释

kafka的优势

kafka的特性

如果往不存在的topic写数据,能不能写入成功呢?

kafka分区命名规则

生产和消费的特点

偏移量

kafka分区写入策略

1. 轮询策略

2. 随机策略

3.按键分配策略


简单介绍

是分布式的基于发布/订阅模式的消息队列(特点是先进先出),也叫消息中间件

kafka中的常用名词解释

  • Producer:即生产者,向Kafka Broker发消息的客户端

  • Broker:kafka集群包含一个或多个服务器,每个服务器节点称为一个broker。一个Broker可以存在多个topic

  • Topic:消息的主题,是逻辑存在的。Kafka可以同时负责多个topic的分发。

  • Partition:分区,每个partition都是一个有序的队列,partition中的每条消息都会被分配一个有序的id(offset)。分区对kafka集群的好处是:实现负载均衡,提高kafka的吞吐量,分区对于消费者来说,可以提高并发度,提升效率。

  • Replication:副本,每一个分区都有多个副本,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader绝对是在不同的机器上。

  • Message:每一条发送的消息主体。

  • Consumer:消费者,从Kafka Broker取消息的客户端

  • Consumer Group:消费者组,我们可以将多个消费者组成一个消费者组。在kafka的设计中同一个分区的数据只能被消费者组中的某一个消费者消费,一个消费者组当中,只能有对应分区数的消费者来消费同一个主题的不同分区的数据,这也是为了提高kafka的吞吐量!

  • Offset:消息在partition中的偏移量。每一条消息在partition都有唯一的偏移量,消息者可以指定偏移量来指定要消费的消息。

  • Leader:分区中的主副本,与生产者、消费者进行通信

  • Follower:分区中的从副本,负责同步leader中的消息(从leader中pull消息)

  • AR Assigned Replicas 同步副本,AR=ISR+OSR

  • ISR In-Sync Replicas,是指及时副本同步列表,消息同步的频率或者时效达到一定要求副本。

  • OSR Outof-Sync Replicas 消息同步存在滞后情况的副本集合

kafka的优势

  1. 多生产者

  2. 多消费者

  3. 基于磁盘的数据存储

  4. 灵活的伸缩性

  5. 高性能

kafka的特性

  1. 高吞吐量,低延迟:每秒可以处理几十万条消息,延迟最低只有几毫秒

  2. 可扩展性

  3. 持久性,可靠性:消息持久化到本地磁盘,并且支持数据备份防止数据丢失

  4. 容错性:允许集群中节点失败(副本数量为n,则允许n-1个节点失败)

  5. 高并发:支持多个客户端同时读写

如果往不存在的topic写数据,能不能写入成功呢?

kafka会自动创建topic,分区和副本的数量根据默认配置都是1。

kafka分区命名规则

主题名-分区编号(0---(分区数-1)) 主题是逻辑存在,分区是物理存在

生产和消费的特点

生产者生产数据,消费者消费的数据只跟leader进行通信,follower作为备份存在,follower当中的数据是从leader当中进行拉取备份。如果leder宕机,follower会通过选举机制上位成为leader,和生产者、消费者进行通信。

同一时刻,一个分区当中的数据只能被一个消费者组下面的一个消费者所消费。

同一时刻,一个消费者组当中,只能有对应分区数的消费者来消费。

在消费者不饱和的情况下,一个消费者是可以去消费多个分区的数据的。

偏移量

每个partition都是一个有序的队列,partition中的每条消息都会被分配一个有序的id(offset)

每个分区中存在一个偏移量,用来记录消费者消费的位置,偏移量永久存在。

kafka分区写入策略

所谓分区写入策略,就是生产者将数据写入到kafka主题后,kafka如何将数据分配到不同分区中的策略

常见的有三种策略,轮询策略,随机策略,和按键保存策略。其中轮询策略是默认的分区策略,而随机策略则是较老版本的分区策略,不过由于其分配的均衡性不如轮询策略,故而后来改成了轮询策略为默认策略。

1. 轮询策略

  • 默认的策略,也是使用最多的策略,可以最大限度保证所有消息平均分配到一个分区
  • 如果在生产消息时,key为 null,则使用轮询算法均衡地分配分区

2. 随机策略

每次都随机地将消息分配到每个分区。在较早的版本,默认的分区策略就是随机策略,也是为了将消息均衡地写入到每个分区。但后续轮询策略表现更佳,所以基本上很少会使用随机策略。

3.按键分配策略

有可能会出现数据倾斜,例如:某个 key 包含了大量的数据,因为key值一样,所有所有的数据将都分配到一个分区中,造成该分区的消息数量远大于其他的分区。
轮询策略、随机策略都会导致一个问题,生产到 Kafka 中的数据是乱序存储的。而按 key 分区可以一定程度上实现数据有序存储——也就是局部有序,但这又可能会导致数据倾斜,所以在实际生产环境中要结合实际情况来做取舍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值