2021-07-03

笔记 专栏收录该内容
6 篇文章 0 订阅

记录数学的灵感

如果在学数学时不理解,看不懂全靠背,背完又忘,忘了再背,数学就像是是文科,是语言,是一套以逻辑为语法,数学符号为文字的语言。

但其实只是靠背,会算,是完全不不够的,学习数学一定要有motivation,有背景,有应用例子,有理论发展的历程。

数学的理论的推导细节可以脱离背景,但是概念的设置,绝不能离开背景,一定有某个问题解决不了,因而引进了这个概念,这样的motivation。

最近看了孟岩的理解矩阵,还有b站3blue1brown的线性代数合集,突然想明白很多以前没懂的数学问题,可惜理解矩阵系列不更新了,不然或许会有更多启发。现在发现理解矩阵里面提出的问题有些作者是不打算继续写了,我想再去把很多数学知识看一遍,需要零零散散记录下一些对于数学的思考,顺便把那几个问题给些解释。于是开个cnds来记录自己零零散散的想法,应该还会有临时考虑不周全,想错的,记录下自己走的弯路,能开始思考,慢慢改正就好。

线性代数,以前一直把矩阵理解为一个线性变换,结果就是很多高深的数学领域中无法理解。为什么对偶空间与原空间看上去貌似一样?为什么协变张量反变张量有时可以是两组基下的表示,有时又是一个作用在另一个上面?拉回映射是作用在函数上的函数,那为什么有那么多奇怪的性质?特征向量为什么能作为一个新的基?还有很多我记不得了问题。

在理解矩阵中,矩阵有两种理解:

  1. 矩阵可以看成一个线性变换,这个线代的书倒是讲得多,不多说。
  2. 矩阵看成一组基或者说一个框架或构型(framework),这里说构型框架是采用力学里的名称,其实这个名称蛮有意思,这个框架就是建立什么样的坐标架,后面说到的不同的坐标系。
    言归正传,把矩阵理解为基,于是,可以把 A x = y Ax =y Ax=y改写为 A x = I y Ax =Iy Ax=Iy I I I为单位阵),理解为,有一个向量,不知道它是什么样子,所以要找一组基来表示它,在单位阵对应的基下,坐标表示为 y y y,现在有一组新的基,由 A A A的列向量构成( A A A的列向量是由在单位阵对应的坐标系下的坐标表示的),所以** A x Ax Ax说的是有个向量在A这组基下的坐标为 x x x**。这里 x x x y y y表示的是同一个向量,只不过是在不同基下的坐标表示而已,大致可理解为人的侧脸和正脸。
    那现在来理解下 A x = B y A x=By Ax=By,同理,它表示有个向量,在坐标系框架 A A A上坐标表示为 x x x,在框架 B B B上坐标表示是 y y y。其实研究一个东西,我们总希望找个好的基去处理,比如当定义了角度后,希望找垂直基的或者说正交基,比如更甚一步,要找既是正交又是单位的基(普通线型空间没有角度定义,以后有机会就考古写写空间的一步步加条件变得越来越复杂)。
    接下来再考虑下 A B = C AB=C AB=C,为了叙述方便,改写为 A X = Y AX=Y AX=Y,解释为 Y Y Y每列代表了一个向量, Y = I Y Y=IY Y=IY,因此这些向量在单位阵对应的坐标系下,坐标值为 Y Y Y,其对应的在矩阵 A A A的列向量所构成的基下的坐标分别为 X X X的各个列。现在,如果这些向量是一组新的基向量呢,这组基向量在单位阵对应坐标下坐标为Y,则这组基在矩阵 A A A的基下坐标是 X X X

再说下 H o m ( V , W ) Hom (V,W) Hom(V,W),这个符号指的是 V V V W W W的线性映射的全体。一个线性空间到另外一个线性空间的线性映射,简单理解下,就是把一个 V V V内的向量映射为 W W W中的一个向量。这里特别考虑 W = V W=V W=V的情况,即 H o m ( V , V ) Hom(V,V) Hom(V,V),按前面理解,就是把 V V V上的一个向量映射为 V V V上的另外一个向量,这就是矩阵乘以向量,矩阵表示了映射,按照前面 H o m ( V , W ) Hom (V,W) Hom(V,W)的概念理解,是矩阵把一个向量映射为另外一个向量,但按照矩阵看成一组基的话,可以理解为有个向量,我们要找的是此向量在不同基下的坐标表示。既然这里向量被理解为了坐标,映射被理解为了坐标架间的变换,那么就可以考虑对偶空间和拉回映射在这里的表示各是什么(下次找机会思考一下试着写写)。

接下来想说说,线性代数有多重要。
某些连续的东西不好处理怎么办,变成线性近似,用线性代数。比如微分,用切面上的线性量去近似计算曲面上的非线性量,然后可以用线性代数处理。
复杂的东西不好处理怎么办,变成简单东西的线性和,用线性代数。比如魏尔斯特拉斯逼近定理,泰勒级数,傅里叶级数。复杂的函数在正交的基下表示,那只用研究基和线性代数就好了,线性在函数的研究问题上处理方法我能总结出两种:

  1. 局部上,用平面代替曲面,高维类似可以用超平面代替。
  2. 整体上,寻早好的基函数,用基函数线性逼近原研究函数,比如拟合,回归,泰勒展开,傅里叶分析,插值里面的拉格朗日基函数等。如下定理就很重要,说明了函数空间的两种基函数,即多项式函数和三角函数。
    在这里插入图片描述
    魏尔斯特拉斯定理,泰勒级数,傅里叶级数都是类似的把函数变为基函数的线性表示的过程。你看,函数空间找好基以后也是个线性空间了,那么研究的线性空间的知识,向量的特性这里都可以用了。

微积分先分开,分成和,然后取极限,其实分析学很多都是分成和,然后再研究分的能否在极限意义下趋近于原研究对象。

数学中有很多问题都是在分类,分类就要找等价类,就要找同样的性质,就要找不变量,找几个不同不变量,如果这些特征是独立的,那么每个特征作为一个维度,分类问题变成线代问题了,如果这些维度张成全空间的一个子空间,那么就意味着无法完全分开。

零零散散记录一些想法,希望能坚持下去。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值