[机器学习]支持向量机3——引入松弛因子

支持向量机1——间隔和支持向量

支持向量机2——对偶问题

支持向量机3——引入松弛因子

支持向量机4——SMO算法
很多情况下,一个分离超平面并不能完全将训练数据分成两部分。那么我们这时可以允许出现一些误差。故引入松弛因子。
从下图中我们可以看到一些样本不能满足间隔大于1这个条件。
这里写图片描述
我们令松弛因子: ζi0 ζ i ≥ 0 ,使得目标函数加生松弛因子 ζi ζ i 大于等于1。即 yi(wTxi+b)1ζi y i ( w T x i + b ) ≥ 1 − ζ i ,同时为松弛因子加入一个代价,以免松弛因子过分大。

minζ,ω,b12||ω||2+Ci=1mζist.yi(wTxi+b)1ζii=1,2,...mζi0 min ζ , ω , b 1 2 | | ω | | 2 + C ∑ i = 1 m ζ i s t . y i ( w T x i + b ) ≥ 1 − ζ i i = 1 , 2 , . . . m ζ i ≥ 0

其中C为惩罚因子(C>0),C的值越大惩罚的力度越大,当C趋于无穷大,那么就是线性可分问题。
拉格朗日函数变成:
L(ω,b,ζ,α,r)=12||ω||2+Ci=1mζii=1mαi[yi(wTxi+b)1+ζi]i=1mriζi(3.1) (3.1) L ( ω , b , ζ , α , r ) = 1 2 | | ω | | 2 + C ∑ i = 1 m ζ i − ∑ i = 1 m α i [ y i ( w T x i + b ) − 1 + ζ i ] − ∑ i = 1 m r i ζ i

KKT条件:

  • αi0 α i ≥ 0
  • yi(ωTxi+b)1+ζi0 y i ( ω T x i + b ) − 1 + ζ i ≥ 0
  • α[yi(ωTxi+b)1+ζi]=0 α [ y i ( ω T x i + b ) − 1 + ζ i ] = 0
  • ri0 r i ≥ 0
  • riζI=0 r i ζ I = 0

Lω=0ω=i=1mαiyixiLω=0i=1mαiyi=0Lζi=0αi=Cri(3.2) (3.2) ∂ L ∂ ω = 0 ⇒ ω = ∑ i = 1 m α i y i x i ∂ L ∂ ω = 0 ⇒ ∑ i = 1 m α i y i = 0 ∂ L ∂ ζ i = 0 ⇒ α i = C − r i

(3.2) ( 3.2 ) 得到的带入 (3.1) ( 3.1 ) 中,得出:

maxαW(α)=i=1mαi12i=1mj=1mαiαjyiyjxixjst. i=1mαiyi=00αiC i=1,2,...m(3.3) (3.3) max α W ( α ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i x j s t .   ∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C   i = 1 , 2 , . . . m

此时KKT条件:

αi=0αi=C0<αi<Cyi(ωTxi+b)1yi(ωTxi+b)1yi(ωTxi+b)=1(3.4) (3.4) α i = 0 ⇒ y i ( ω T x i + b ) ≥ 1 α i = C ⇒ y i ( ω T x i + b ) ≤ 1 0 < α i < C ⇒ y i ( ω T x i + b ) = 1

这里写图片描述

参考资料

1.https://blog.csdn.net/luoshixian099/article/details/51073885#comments

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>