单调队列优化dp--bzoj1705

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sizeof_you/article/details/83007118

传送门
暴力的dp是1e9的,是这样一样转移式:
f[i][j]=min{f[i1][k]+jkc}+(ja[i])2f[i][j]=min\{f[i-1][k]+|j-k|*c\}+(j-a[i])^2
然后分类讨论去掉绝对值
f[i][j]={min{f[i1][k]+jckc}+(ja[i])2j>=kmin{f[i1][k]jc+kc}+(ja[i])2j<kf[i][j]=\begin{cases}min\{f[i-1][k]+j*c-k*c\}+(j-a[i])^2&j>=k\\min\{f[i-1][k]-j*c+k*c\}+(j-a[i])^2&j<k\end{cases}
然后发现后面那一堆可以单调队列优化,其实也不算单调队列
就是把循环顺序改一下记一个最小值就可以了
如果从前往后循环就能保证j>=k,从后往前就能保证j<k,取min就好了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#define maxn 100005
#define inf 0x3f3f3f3f
#define LL long long
using namespace std;
int n,c,a[maxn],f[2][105],mx,now,ans=inf;

inline int rd(){
	int x=0,f=1;char c=' ';
	while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
	while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
	return x*f;
}

int main(){
	n=rd(); c=rd();
	for(int i=1;i<=n;i++) a[i]=rd(),mx=max(mx,a[i]);
	for(int i=0;i<=mx;i++) f[1][i]=f[0][i]=inf;
	for(int i=a[1];i<=mx;i++) f[now][i]=(i-a[1])*(i-a[1]);
	for(int i=2;i<=n;i++){
		now^=1; int k=inf;
		for(int j=a[i-1];j<=mx;j++){ 
			k=min(k,f[now^1][j]-j*c);
			if(j>=a[i]) f[now][j]=k+(j-a[i])*(j-a[i])+c*j;	
		}
		k=inf;
		for(int j=mx;j>=a[i];j--){
			k=min(k,f[now^1][j]+j*c);
			f[now][j]=min(f[now][j],k+(j-a[i])*(j-a[i])-c*j);
		}
		for(int j=0;j<=mx;j++)
			f[now^1][j]=inf;
	}
	for(int i=a[n];i<=mx;i++)
		ans=min(ans,f[now][i]);
	printf("%d\n",ans);
	return 0;
}
展开阅读全文

没有更多推荐了,返回首页