你打算做甜点,现在需要购买配料。目前共有 n 种冰激凌基料和 m 种配料可供选购。而制作甜点需要遵循以下几条规则:
必须选择 一种 冰激凌基料。
可以添加 一种或多种 配料,也可以不添加任何配料。
每种类型的配料 最多两份 。
给你以下三个输入:
baseCosts ,一个长度为 n 的整数数组,其中每个 baseCosts[i] 表示第 i 种冰激凌基料的价格。
toppingCosts,一个长度为 m 的整数数组,其中每个 toppingCosts[i] 表示 一份 第 i 种冰激凌配料的价格。
target ,一个整数,表示你制作甜点的目标价格。
你希望自己做的甜点总成本尽可能接近目标价格 target 。
返回最接近 target 的甜点成本。如果有多种方案,返回 成本相对较低 的一种。
示例 1:
输入:baseCosts = [1,7], toppingCosts = [3,4], target = 10
输出:10
解释:考虑下面的方案组合(所有下标均从 0 开始):
- 选择 1 号基料:成本 7
- 选择 1 份 0 号配料:成本 1 x 3 = 3
- 选择 0 份 1 号配料:成本 0 x 4 = 0
总成本:7 + 3 + 0 = 10 。
示例 2:
输入:baseCosts = [2,3], toppingCosts = [4,5,100], target = 18
输出:17
解释:考虑下面的方案组合(所有下标均从 0 开始):
- 选择 1 号基料:成本 3
- 选择 1 份 0 号配料:成本 1 x 4 = 4
- 选择 2 份 1 号配料:成本 2 x 5 = 10
- 选择 0 份 2 号配料:成本 0 x 100 = 0
总成本:3 + 4 + 10 + 0 = 17 。不存在总成本为 18 的甜点制作方案。
示例 3:
输入:baseCosts = [3,10], toppingCosts = [2,5], target = 9
输出:8
解释:可以制作总成本为 8 和 10 的甜点。返回 8 ,因为这是成本更低的方案。
示例 4:
输入:baseCosts = [10], toppingCosts = [1], target = 1
输出:10
解释:注意,你可以选择不添加任何配料,但你必须选择一种基料。
class Solution {
public:
int closestCost(vector<int>& baseCosts, vector<int>& toppingCosts, int target) {
int x = *min_element(baseCosts.begin(), baseCosts.end());
if(x >= target){
return x;
}
int res = 0x3f3f3f3f;
vector<bool>dp(target+1, false);
for(int& baseCost : baseCosts){
if(baseCost <= target){
dp[baseCost] = true;
}
else{
res = min(res, baseCost);
}
}
for(int& toppingCost : toppingCosts){
for(int count = 0; count <= 1; count++){
for(int j = target; j >= 0; j--){
if(dp[j] && toppingCost + j >= target){ //首先确保有这个价位的方案
res = min(res, toppingCost + j);
}
if(j - toppingCost > 0){
dp[j] = dp[j] | dp[j-toppingCost];
}
}
}
}
for(int i = 0; i <= res-target; i++){
if(dp[target-i]){
return target-i;
}
}
return res;
}
};

初始化int res = 0x3f3f3f3f; 只是为了将res设定为一个较大的值,然后在比较中用于逐渐逼近target。
如果最便宜的冰淇淋基料价格已经大于target,那么就不用考虑配料,直接返回最便宜的冰淇淋基料价格。
然后根据基料价格来初始化dp,当基料价格高于target,则更新res为两者较小值。
接下来遍历每个配料价格,然后遍历两遍(因为每个配料可以最多选两次)。从target倒序遍历到0,如果有j价位存在,那么看 j + 配料价格是否大于target,如果是的话就更新res为较小值。
如果j - toppingCost > 0,那么就是0-1背包的做法,当选择该配料的时候,有没有能够成的j价位取决于有没有 j-toppingCost 是否为true,如果不选择该配料,那么能否构成j价位取决于之前是否已经构成了j价位。只要两者其一为true,那么dp[j]就是true。
最后从target依次往前找是否有存在的价位,如果有则返回。当dp[target-i]中的target-i要比res - target大的时候,就返回res,因为这时候res就是最接近目标价位的价格。

350

被折叠的 条评论
为什么被折叠?



