给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

动态规划
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int ans = 0;
int n = prices.size();
vector<vector<int>> f(n, vector<int>(2));
f[0][0] = -prices[0];
//f[i][0]持有股票
//f[i][1]不持有股票
for(int i = 1; i < n; i++){
f[i][0] = max(f[i-1][0], f[i-1][1] - prices[i]);
f[i][1] = max(f[i-1][1], f[i-1][0] + prices[i] - fee);
}
return f[n-1][1];
}
};
时间复杂度:O(n),其中 n 为数组的长度。一共有 2n 个状态,每次状态转移的时间复杂度为 O(1),因此时间复杂度为 O(2n)=O(n)。
空间复杂度:O(n),取决于是否使用数组存储所有的状态。
我们可以定义两个状态f[i][0]和f[i][1]。f[i][0]代表第i天结束后并持有股票的最大利润,f[i][1]代表第i天结束后没有持有股票的最大利润。
那么f[i][0]可以从两个状态转换而来,第一种是不操作,说明前一天结束的时候就已经持有股票,第二种是第i天买入了股票,说明前一天结束的时候没有持有股票。
f[I][1]也可以从两个状态转换而来,第一种是不操作,说明前一天结束的时候依旧没有持有股票,第二种是第i天卖出了股票,说明前一天结束的时候持有股票。
空间优化
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int ans = 0;
int n = prices.size();
//f[i][0]持有股票
//f[i][1]不持有股票
int f0 = -prices[0];
int f1 = 0;
for(int i = 1; i < n; i++){
int new_f0 = max(f0, f1 - prices[i]);
int new_f1 = max(f1, f0 + prices[i] - fee);
f0 = new_f0;
f1 = new_f1;
}
return f1;
}
};
空间复杂度优化为O(1)。
由于我们可以发现第一种方法里,都只依赖于前一天的状态,所以我们可以使用四个变量,其中两个变量来定义新的一天的收益,另外两个变量f0和f1用来储存前一天的状态来供新一天进行状态转移。
注:本题也可以通过贪心算法达到时间复杂度O(n),空间复杂度O(1)
188

被折叠的 条评论
为什么被折叠?



