给你一个下标从 0 开始的二进制字符串 s ,它表示一条街沿途的建筑类型,其中:
s[i] = ‘0’ 表示第 i 栋建筑是一栋办公楼,
s[i] = ‘1’ 表示第 i 栋建筑是一间餐厅。
作为市政厅的官员,你需要随机 选择 3 栋建筑。然而,为了确保多样性,选出来的 3 栋建筑 相邻 的两栋不能是同一类型。
比方说,给你 s = “001101” ,我们不能选择第 1 ,3 和 5 栋建筑,因为得到的子序列是 “011” ,有相邻两栋建筑是同一类型,所以 不合 题意。
请你返回可以选择 3 栋建筑的 有效方案数 。
示例 1:
输入:s = “001101”
输出:6
解释:
以下下标集合是合法的:
- [0,2,4] ,从 “001101” 得到 “010”
- [0,3,4] ,从 “001101” 得到 “010”
- [1,2,4] ,从 “001101” 得到 “010”
- [1,3,4] ,从 “001101” 得到 “010”
- [2,4,5] ,从 “001101” 得到 “101”
- [3,4,5] ,从 “001101” 得到 “101”
没有别的合法选择,所以总共有 6 种方法。
示例 2:
输入:s = “11100”
输出:0
解释:没有任何符合题意的选择。

class Solution {
public:
long long numberOfWays(string s) {
int k = count(s.begin(), s.end(), '1');
int cnt = 0;
long long res = 0;
int n = s.size()
; for(int i = 0; i < n; i++){
if(s[i] == '1'){
res += (long long)(i-cnt) * ((n-k)-(i-cnt));
cnt++;
}
else{
res += (long long)cnt * (k-cnt);
}
}
return res;
}
};
时间复杂度:O(n),其中 n 为字符串 s 的长度,即为遍历计算字符串中 1 的数量以及计算方案总数的时间复杂度。
空间复杂度:O(1)。
遍历字符串s,假设每个元素为中间元素,定义cnt为之前的1的数量,定义count为字符串中总共的1的数量,res为有效方案数的总数。
当s[I]为1的时候,这种情况下的有效方案数的数量为前面的0的数量和后面的0的数量的乘积,对应代码res += (long long)(i-cnt) * ((n-k)-(i-cnt));,然后cnt要++。
当s[I]为0的时候,有效方案的数量为前面的1的数量和后面1的数量的乘积,对应代码res += (long long)cnt * (k-cnt);。
最后返回res。
880

被折叠的 条评论
为什么被折叠?



