自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(191)
  • 收藏
  • 关注

原创 gpt-4o-mini 等大模型的第三方中转API接口教程

摘要:本文介绍了如何在Python环境中使用gpt-4o-mini模型,包括Anaconda的安装与配置、创建新的Python虚拟环境、安装langchain与openai相关包、接入OpenAI API(包括使用第三方API站点以规避地域限制)的方法。详细步骤涵盖了环境变量的设置、API密钥的管理、模型调用的代码示例及消费估算。此外,还提供了优化大模型使用效率的建议,如使用多线程、令牌池,以及编写有效提示词的重要性。最后,推荐了相关教程和提示词编写技巧,旨在帮助读者更好地利用大模型进行自然语言处理任务。

2024-08-21 13:10:09 2798 4

原创 基于 LlamaFactory 微调大模型的实体识别的评估实现

利用 LlamaFactory 框架微调大语言模型完成实体识别任务。在实体识别评估中,采用实体边界完全匹配方可计为正确结果。代码实现包括分类评价指标的计算(准确率、召回率与 F1 值)。

2024-12-06 16:15:26 430

原创 使用 LlamaFactory 结合开源大语言模型实现文本分类:从数据集构建到 LoRA 微调与推理评估

使用 LlamaFactory 框架结合开源大语言模型完成文本分类实验。以 LoRA 微调 `qwen/Qwen2.5-7B-Instruct` 为例,涵盖了数据集构建、模型配置与训练、以及推理与评估的完整流程。并提供了基于生成式预测的文本分类评估代码。

2024-12-06 15:45:50 995

原创 基于 LLamafactory 的异步API高效调用实现与速度对比

通过异步方式调用大语言模型 API的方法,相较于传统同步调用方式,显著提升了推理效率。文章展示了如何利用 LLamafactory 原生数据加载工具和自定义异步工具类 AsyncAPICall 实现批量数据推理,避免程序崩溃时数据丢失。通过实验对比,异步调用比同步调用速度提升了约 9.41 倍。

2024-12-01 23:23:05 977

原创 基于 LlamaFactory 的 LoRA 微调模型支持 vllm 批量推理的实现

本文介绍了如何通过 LlamaFactory 原生数据集,实现支持 LoRA 微调模型的 vllm 批量推理。提供了完整代码实现和配置示例,展示了使用 vllm 加速推理的方式。测试结果表明vllm推理代码提升了推理效率。

2024-11-29 10:57:46 692

原创 LLamafactory API部署与使用异步方式 API 调用优化大模型推理效率

介绍了如何利用 LLamafactory 将微调后的 LoRA 模型部署为 API 服务,并通过 Python 异步调用实现高效请求处理。文章详细阐述了异步工具类封装的流程,同时以生成数学计算数据集为案例,展示了如何批量调用大模型 API 并优化性能。针对可能出现的服务器拒绝响应和程序崩溃问题,本文提出了分块处理与断点续跑机制。附有代码示例与项目开源地址供读者参考实践。

2024-11-27 10:13:41 1540 3

原创 LLamafactory 批量推理与异步 API 调用效率对比实测

本文通过构建数学运算数据集,测试了 LLamafactory 的两种大模型推理方式——批量推理和异步 API 调用,并对两者的速度进行了对比分析。结果显示,LLamafactory 的批量推理由于不支持 vllm,速度较慢,完成 100 条数据推理耗时 4 分 42 秒;而异步 API 调用仅用时 14 秒,效率显著更高。结合 LLamafactory 微调和 API 部署,以及异步调用 API,以达到快速推理的目的,并提供了项目的开源代码供读者参考。

2024-11-26 22:51:04 1259

原创 千问 Qwen2.5-7B-Instruct 模型微调后“变身”Claude:是前世记忆还是数据版权?

在微调 Qwen2.5-7B-Instruct 的过程中,竟在短短5个epoch后,声称自己是Anthropic的 Claude。这是偶然的Bug,还是潜在的数据安全隐患?从技术原因到品牌形象的深远影响,这个事件值得每一位AI开发者深思。

2024-11-26 10:19:48 649

原创 llama-factory 系列教程 (七),Qwen2.5-7B-Instruct 模型微调与vllm部署详细流程实战

介绍了如何使用该工具进行模型的微调和部署,内容涵盖工具的安装、模型下载、数据集准备、Lora 微调方法、命令行与 YAML 文件配置的训练流程,以及推理测试与多种部署方式。文章以实验流程为线索,结合图文演示,快速上手并高效完成 LLaMA-Factory 的实际应用。

2024-11-25 15:42:16 2011

原创 使用 PyMySQL 操作 MySQL 数据库

使用 PyMySQL 操作 MySQL 数据库,包括数据库连接、数据查询、批量插入和更新操作的实现方法。同时,文章强调了敏感信息管理、事务处理、错误捕获以及性能优化的重要性等实践。通过分批插入等方法,可显著提升数据操作效率。

2024-11-20 15:06:51 636

原创 大模型 API 异步调用优化:高效并发与令牌池设计实践

本文探讨了大模型 API 调用中速度优化的关键技术。通过结合 Python 的异步编程和令牌池设计,能够显著提高并发任务处理效率,同时避免因频率过高导致封号。文章从基础异步实现、限速机制、进度条展示到多令牌池优化方案,提供了详细的代码示例和实践建议,并应用于大模型四则运算任务中,展示了异步调用的显著性能提升。

2024-11-19 15:45:12 802

原创 企业信息表的多维数据增强:资质属性与海关数据的添加方法

通过**企业资质**和**海关出口数据**的加入,丰富企业信息表的维度,为企业分析提供更强大的数据支持。我们从实际业务需求出发,利用 Python 和 Pandas 库实现数据清洗、表格拼接与字段合并,并通过代码示例,展示如何实现自动化数据扩展。最终结果是更全面的企业信息表,为后续数据分析和决策提供坚实基础。

2024-11-13 13:27:59 849

原创 使用VSCode远程连接服务器并解决Neo4j无法登陆问题

介绍了如何通过VSCode连接内网部署的Neo4j服务器,并启动服务。在访问Neo4j登录界面时,遇到了端口映射问题导致无法登录。通过手动添加7687端口的映射,并刷新网页后成功登录Neo4j。

2024-11-09 22:19:52 646

原创 基于MySQL的企业专利数据高效查询与统计实现

介绍了基于MySQL的企业专利数据查询与统计方法,旨在提升专利数据检索效率。首先,将专利数据按申请人拆分并存入`patent_p`表,为申请人字段建立索引,实现快速查询。其次,利用SQL和Python脚本,通过公司名称查询每年的专利数量和专利得分,并将结果导出至Excel表格。该方案适用于企业评估与产业链分析,能够有效支持大规模专利数据的快速统计和分析需求。

2024-11-04 11:23:05 971

原创 3500多万家专利数据存入Mysql数据库

将大规模专利数据存入MySQL数据库的实践。从使用Pandas读取专利数据开始,详细说明了如何将中文属性名映射为英文,并生成创建数据库表的SQL语句。

2024-10-28 16:01:57 529

原创 Linux 开机自动挂载硬盘

介绍了如何在 Linux 系统中设置开机自动挂载硬盘的方法。通过查看硬盘分区信息、创建挂载点、编辑 `/etc/fstab` 文件配置自动挂载,以及测试和重启验证等步骤,实现硬盘的开机自动挂载。此外,文章还对配置字段进行了详细解析,确保系统启动时自动访问硬盘数据。

2024-10-28 12:43:53 1760

原创 大规模企业工商信息导入MySQL数据库的技术实战与优化

本文介绍了将超过2亿条企业工商信息高效导入MySQL数据库的技术方法,包括表结构设计、数据预处理、批量插入和错误处理等关键步骤。针对大规模数据存储,本文提供了索引优化使用等性能优化建议,确保数据处理的高效性。

2024-10-25 20:07:11 802

原创 配置 SSH 无需密码连接服务器及为 IP 指定自定义域名

SSH(Secure Shell)是常用的远程登录工具,支持安全的远程连接和文件传输。本文将介绍如何在 Mac 上配置 SSH 无需密码连接服务器,以及如何为一个 IP 地址指定自定义域名,以便更方便地使用 SSH 进行连接。

2024-10-25 19:03:11 977

原创 MySQL 批量插入详解:快速提升大数据导入效率的实战方法

使用 Python 和 PyMySQL 库高效地将大量数据批量插入 MySQL 数据库。通过学生信息表的实战示例,详细讲解了批量插入的实现方法,包括生成随机数据、批量执行插入操作、事务管理和性能优化技巧。相比逐行插入,批量插入显著提高了数据导入的效率。还提供了性能优化建议,如调整批次大小、禁用自动提交和索引优化等,帮助读者掌握批量插入的最佳实践,提高大规模数据处理的性能。

2024-10-25 10:07:12 1425

原创 解决Transformer训练中的AttributeError: ‘AdamW‘ object has no attribute ‘train‘问题

本文分享了在使用transformers库进行BERT模型训练时遇到的AttributeError: 'AdamW' object has no attribute 'train'错误的解决过程。通过查找相关信息,发现问题源于accelerate库版本过低,并通过将库升级至0.34.2版本成功解决报错。本文详细介绍了问题排查、版本更新的步骤,以及如何忽略更新中的警告提示,以帮助读者快速解决类似问题。

2024-10-16 10:55:35 1240 2

原创 如何在Ubuntu上更改MySQL数据存储路径

本文介绍了在Ubuntu系统中更改MySQL数据存储路径的详细步骤。首先,建议备份现有的数据库数据以防止丢失。接着,停止MySQL服务并复制现有数据到新的目录。然后,修改MySQL配置文件以更新数据目录和socket位置。对于启用了AppArmor或SELinux的系统,需相应更新其配置以允许访问新目录。最后,重启MySQL服务并验证更改是否成功。

2024-10-12 17:25:18 1664 2

原创 BERT 多分类实战:从训练到评估的完整指南

使用 transformers.Trainer 自动训练模型,使用训练完成的模型进行预测,评估模型训练的效果。

2024-09-30 16:24:43 1249

原创 利用pandas为海量数据添加UUID并实现精准筛选

在数据处理中,为每条数据记录赋予独特身份标识至关重要。本文通过引入UUID 作为全局唯一标识符,结合强大的pandas库,详细介绍了如何为数据表轻松添加UUID,并通过UUID精准筛选出所需数据。文章从环境准备、构建示例数据、添加UUID列,到精准筛选数据等步骤进行了详细阐述,为数据处理人员提供了一种直观且高效的数据交互方式。

2024-09-19 22:15:09 767

原创 同一Python脚本中训练多个模型时的 wandb 配置错误解决方案

训练多个模型时,可能会遇到WandB 配置错误,尤其是在训练多个模型参数大小不一致的情况下。介绍如何解决因模型参数变化导致的WandB配置错误,具体报错信息为“Attempted to change value of key 'model/num_parameters' from xxxx to xxxx”。我们将探讨如何通过调用`wandb.finish()`来结束前一个模型的训练,并确保下一个模型的训练能够顺利进行。

2024-09-17 21:20:59 978

原创 使用多个 GitHub 账号的 SSH 配置与常见问题排查

在开发过程中,涉及到多个 GitHub 账号的使用。为了避免每次切换账号时手动输入用户名和密码,通过配置多个 SSH 密钥来管理这些账号。本文将详细介绍如何为每个 GitHub 账号生成独立的 SSH 密钥、如何配置 SSH 代理、以及在使用 SSH 连接克隆仓库时遇到的常见错误及其解决方案。

2024-09-17 10:46:48 1240 1

原创 解决 PyCharm 无法启动 Jupyter 服务器的问题:报错分析与解决方案

PyCharm 无法启动 Jupyter 服务器。通过指定 IP 地址来解决问题的有效方案。最终,配置 PyCharm 的 Jupyter 设置后,成功运行了 .ipynb 文件。

2024-09-14 16:06:00 1900

原创 使用Bert模型优化Padding策略:加速文本分类训练

本文探讨了如何通过优化Padding策略,提高基于Bert的文本分类模型的训练速度。我们比较了两种不同的Padding方式:一种是将输入数据统一填充到最大长度512,另一种是只将每个Batch中的数据填充到Batch中最长的样本长度。通过实验结果证明,后者显著减少了训练时间,且不影响模型的性能。

2024-09-10 21:20:05 893

原创 使用 Bert 做文本分类,利用 Trainer 框架实现 二分类,事半功倍

介绍了如何使用 `transformers` 库的 `Trainer` 进行Bert模型的自动微调,无需手动调整损失函数和参数更新。导入必要的库和数据集,文章展示了加载中文Bert模型并对文本进行分类的过程。文中详细讲解了如何将数据集转换为Bert模型可处理的格式,并通过 `TrainingArguments` 和 `Trainer` 设置训练参数和执行训练。使用 `Trainer` 不仅节省时间,还能保证模型效果。使用 `wandb` 记录和可视化训练过程,可视化查看模型训练过程。

2024-09-06 17:00:43 694 1

原创 使用 LangGraph 构建工作流, 实现与虚拟女友对话

介绍了如何使用 LangGraph 搭建一个基于聊天机器人的工作流,具体实现了一个虚拟女友的角色扮演游戏。 通过流程图展示了构建完成的状态图,并介绍了各个节点的功能,如接收用户输入、生成对话等。 博主还提供了是否使用历史聊天记录的方法,使虚拟女友记住用户之前的对话,还是忘记。通过此项目,读者可以学习如何使用 langgraph 中实现类似的工作流搭建。

2024-08-24 22:18:34 638

原创 从数据生成到图数据库:Linux下Neo4j的CSV导入

介绍如何在Linux系统中设置和使用Neo4j数据库。* 首先,找到Neo4j的import文件夹,通常位于Neo4j安装目录下的data文件夹内,并展示通过`neo4j.conf`配置文件查找和修改import目录路径。* 接着,通过大模型生成两张CSV表格数据,一张是老师数据,另一张是学生数据,并保存到import文件夹中。* 最后,展示了如何使用Cypher语句将这两张表格导入Neo4j,创建相应的节点和关系。

2024-08-24 09:58:19 911

原创 vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%

本文记录了使用 vllm 部署 GLM4-9B-Chat 模型进行 Zero-Shot 文本分类的实验过程与结果。通过对 AG_News 数据集的测试,研究发现大模型在直接进行分类时的准确率为 77%。然而,让模型给出分类原因描述(reason)后,准确率显著提升至 83%,提升幅度达 6%。这一结果验证了引入 reasoning 机制的有效性。文中详细介绍了实验数据、提示词设计、模型推理方法及评估手段。

2024-08-23 16:33:11 1167

原创 linux neo4j 切换知识图谱

介绍了在 Linux 系统上安装和配置 Neo4j,以及如何切换不同的数据库以管理多个知识图谱。首先介绍了如何在 Ubuntu 上通过命令行安装 Neo4j。针对 Neo4j 免费版不支持多数据库管理的限制,作者提供了一种通过本地文件夹切换数据库的解决方案。步骤包括停止 Neo4j 服务、备份现有数据库文件、创建新文件夹、设置新密码,并启动新的知识图谱数据库。

2024-08-23 13:31:55 1113

原创 datasets库一些基本方法:filter、map、select等

本文介绍了使用datasets库在Python中高效处理数据集的方法。文中展示了如何安装和导入huggingface数据集,并详细说明了使用filter、map和select方法对数据集进行筛选、转换和采样的具体步骤,同时解决了因网络问题导致的连接难题。还展示了如何通过map方法转换数据集样式,实现数据集的定制化处理。

2024-08-21 11:11:06 1203

原创 使用大模型从政府公文中抽取指标数据

本文介绍了利用LangChain结合Ollama的qwen2:7b模型,从政府工作报告中高效提取全国市级单位年度生产总值增长指标。通过精准文本筛选、few-shot提示和结构化输出,实现了快速准确的数据抽取。实验表明,qwen2模型虽小但性能优异,展现出大模型在自然语言处理中的强大能力。同时,文章还对比了不同模型的优劣势,提供了一些优化建议。

2024-08-14 23:44:51 887

原创 LangGraph 自定义工具调用,大模型使用加法和乘法工具的工作流实现

文章提出了采用few-shot学习的方法,通过给大模型提供几个示例来激活其工具调用能力,而非进行复杂的微调。文章通过构建工作流结构,包括llm节点(生成工具调用和结果输出)和action节点(运行工具调用并输出结果),展示了自动化实现工具调用和结果处理的流程。工作流的优势在于能够简化流程,自动处理大模型输出、工具调用及结果反馈的循环。

2024-08-14 20:40:22 1282

原创 glm4-9B-chat,使用提示工程激活模型最大潜力

作者探讨了如何通过提示词优化大模型的文本生成能力,特别是通过使用Ollama和LangChain来增强细节丰富度和生成范围。文章介绍了GLM4-9B模型的独特性,尤其是其能通过巧妙提示词实现广泛的文本生成能力。作者还分享了一些实用的提示工程技巧,如何引导模型绕过拒答并生成所需内容。

2024-08-13 10:18:34 795

原创 利用langchain 做大模型 Few-shot Learning 提示,包括固定和向量相似的动态样本筛选

本文介绍了Few-shot Learning,相对于大模型微调,通过提供少量样本示例来提升模型在特定任务上的表现。固定样本提示每次使用相同的示例,而动态样本提示则根据当前任务选择相似的示例。通过示例代码展示了如何在LangChain中实现固定和动态样本提示,以及如何利用向量相似度算法选择最相似的样本进行推理,从而提高模型性能。

2024-08-01 20:00:15 1076

原创 llama-factory 系列教程 (六),linux shell 脚本自动实现批量大模型的训练、部署与评估

使用linux shell 脚本,自动化批量处理大模型的微调、部署与评估。无需人工逐个交互处理,减少人工的精力和时间。

2024-07-31 22:18:15 1345

原创 llama-factory 系列教程 (五),SFT 微调后的模型,结合langchain进行推理

使用Llamafactory微调模型后,完成vllm的API本地部署,再利用 langchain 工具进行推理。

2024-07-30 21:49:15 911

原创 langchain使用jina-embeddings构建Chroma向量库,解决加载模型初始化失败

使用 `{"trust_remote_code":True}` 传递给 langchain_community.embeddings 的 SentenceTransformerEmbeddings ,逐步解析 `jinaai/jina-embeddings-v2-base-en` 编码模型初始化加载异常的问题。

2024-07-28 11:47:14 923

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除