sjyttkl的专栏

机器学习基本算法

排序:
默认
按更新时间
按访问量

单点登录原理与简单实现

别人实现的  GitHub:https://github.com/sheefee/simple-sso 一、单系统登录机制 1、http无状态协议   web应用采用browser/server架构,http作为通信协议。http是无状态协议,浏览器的每一次请求,服务器会独立处理,不与之前或...

2018-11-09 01:29:29

阅读数:17

评论数:0

线性判别分析(Linear Discriminant Analysis)

线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的...

2018-11-03 18:39:28

阅读数:35

评论数:0

LCS算法

个人分类: DP之 LCS 刚刚开始看这个算法,真的不是很懂,不过看了一个牛牛的博客,http://blog.csdn.net/v_july_v/article/details/6695482,觉得写得挺好,可以看看。  程序员编程艺术第十一章:最长公共子序列(LCS)问题 0、前...

2018-09-13 22:28:26

阅读数:50

评论数:0

字符串相似度算法(编辑距离算法 Levenshtein Distance)

在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑...

2018-09-13 22:25:18

阅读数:70

评论数:0

数据挖掘中所需的概率论与数理统计知识

数据挖掘中所需的概率论与数理统计知识   (关键词:微积分、概率分布、期望、方差、协方差、数理统计简史、大数定律、中心极限定理、正态分布)   导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之...

2018-09-04 21:03:34

阅读数:75

评论数:0

最大熵模型中的数学推导

     最大熵模型中的数学推导   0 引言     写完SVM之后,一直想继续写机器学习的系列,无奈一直时间不稳定且对各个模型算法的理解尚不够,所以导致迟迟未动笔。无独有偶,重写KMP得益于今年4月个人组织的算法班,而动笔继续写这个机器学习系列,正得益于今年10月组织的...

2018-09-04 21:01:47

阅读数:40

评论数:0

case when then else end

sql case when then else end 查询生成统计列表: SELECT a.managecom, a.subtype, count(*) loadsucc, sum(case when a.state in ('4', '5',...

2018-09-04 20:05:37

阅读数:31

评论数:0

数据衰减的一些方法和比较

数据衰减的一些方法和比较 在计算机视觉实时应用中,有时候需要向云台发送一些数据,比如说角度,使之运动到相应的角度。但是考虑到有时候如果直接发送目标的相对角度,可能角度比较大,从而导致云台运动过于剧烈,此时考虑将发送的数据做一个衰减。 一般直接想到对发送的数据做线性衰减,比如说发送数据yaw...

2018-08-28 19:10:20

阅读数:98

评论数:0

统计模型之间的比较

       HMM模型将标注看作马尔可夫链,一阶马尔可夫链式针对相邻标注的关系进行建模,其中每个标记对应一个概率函数。HMM是一种产生式模型,定义了联合概率分布 ,其中x和y分别表示观察序列和相对应的标注序列的随机变量。为了能够定义这种联合概率分布,产生式模型需要枚举出...

2018-08-28 12:06:34

阅读数:93

评论数:0

标注偏置问题(Label Bias Problem)和HMM、MEMM、CRF模型比较

出处:http://blog.csdn.net/zhoubl668/article/details/7787690 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0.018 路径1-2-1-2:0.06 路径1-1-2-2:0.066 由此可...

2018-08-22 18:54:24

阅读数:39

评论数:0

hanlp中的N最短路径分词

N-最短路径 是中科院分词工具NLPIR进行分词用到的一个重要算法,张华平、刘群老师在论文《基于N-最短路径方法的中文词语粗分模型》中做了比较详细的介绍。该算法算法基本思想很简单,就是给定一待处理字串,根据词典,找出词典中所有可能的词,构造出字串的一个有向无环图,算出从开始到结束所有路径中最短的前...

2018-08-22 18:26:51

阅读数:31

评论数:0

初学者如何查阅自然语言处理(NLP)领域学术

原文地址:初学者如何查阅自然语言处理(NLP)领域学术    资料作者:刘知远THU   昨天实验室一位刚进组的同学发邮件来问我如何查找学术论文,这让我想起自己刚读研究生时茫然四顾的情形:看着学长们高谈阔论领域动态,却不知如何入门。经过研究生几年的耳濡目染,现在终于能自信地知道去哪儿了解最新科研...

2018-08-22 12:04:39

阅读数:51

评论数:0

Python——数组重组(flatten、flat、ravel、reshape、resize)

一、numpy.flatten一、numpy.flatten <span style="color:#000000"><code>ndarray.flatten(&...

2018-08-20 16:07:44

阅读数:69

评论数:0

机器学习系列之EM算法

机器学习系列之EM算法 我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。 一、EM算法的预备知识 1、极大似然估计 (1)举例说明:经典问题——学生身高问题   我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女...

2018-08-11 16:48:18

阅读数:39

评论数:0

极大似然估计

极大似然估计         以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:   贝叶斯决策         首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:           其中:p(w):为先验概率,表示...

2018-08-07 15:07:25

阅读数:59

评论数:0

Git入门--使用GitBush提交自己本地的第一个项目(亲测有效)

  2016年03月23日 10:38:09 阅读数:4036 前言 转载地址:http://hellokugo.blog.51cto.com/9827529/1615715 按照正文下面的步骤跟着一步一步具体操作,就能成功提交自己在git上的第一个项目, 正文 1.在GitHub上建...

2018-07-22 12:14:19

阅读数:123

评论数:0

极大似然估计

极大似然估计         以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:   贝叶斯决策         首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:           其中:p(w):为先验概率,表示...

2018-07-19 14:19:35

阅读数:115

评论数:0

python __set__ __get__ 等解释

2017年02月10日 01:00:55阅读数:3403如果你和我一样,曾经对method和function以及对它们的各种访问方式包括self参数的隐含传递迷惑不解,建议你耐心的看下去。这里还提到了Python属性查找策略,使你清楚的知道Python处理obj.attr和obj.attr=val...

2018-06-11 17:32:00

阅读数:365

评论数:0

python总结(五):__get__、__getattr__、__getitem__、__getattribute__之间的差异与联系

python的一切数据都是对象,包括函数、基本数据类型、自定义数据类型等等,这其中最复杂的就是对象内部存储的数据结构(引用),包括类属性、数据描述符、实例属性及非数据描述符,不仅它们的优先级不一样,而且它们的回调函数也存在很大的差异,这也是本文需要阐述的地方。如果以前有过Javascript的编程...

2018-06-11 17:00:13

阅读数:60

评论数:0

python 特殊方法之__call__()

_call__ 在Python中,函数其实是一个对象: >>> f = abs >>> f.__name__ 'abs' >&...

2018-06-11 15:34:36

阅读数:40

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭