知识库系统:CYC Wordnet(组会提过) ConceptNet Freebase DBpedia(RDF三元组)中文Zhishi.me
知识图谱技术体系:
知识表示 RDF和OWL 三元组主谓宾 RDF Graph:有向标记图 SPARQL:RDF的查询语言 JSON-LD 分布式表示:KG Embedding(方法有:张量分解、神经网络NTN、距离模型,便于知识挖掘)
相关论文:A Three-Way Model for Collective Learning on Multi-Relational Data
知识抽取 NLP+KR 评测:MUC-7、ACE、KBP track 主要方法:知识工程(正则、模板匹配、规则约束)
基于本体的抽取(知识挖掘、PRA、TransE系列)基于模型的抽取(模型、训练)
知识存储 基于关系数据库和基于原生图的存储 实践中多为混合存储
知识问答 KBQA
知识推理 基于已知事实推出来 基于描述逻辑的推理、基于统计规则挖掘的推理、基于表示学习的推理
知识融合 工具Dedupe、LIMES 知识众包:schema.ORG
本文探讨了知识图谱技术体系,包括CYC、Wordnet、ConceptNet等知识库系统,以及RDF、OWL三元组的知识表示方法。深入讨论了知识抽取、存储、问答、推理和融合的关键技术,并介绍了相关评测标准和工具。


被折叠的 条评论
为什么被折叠?



