知识图谱网课记录1

本文探讨了知识图谱技术体系,包括CYC、Wordnet、ConceptNet等知识库系统,以及RDF、OWL三元组的知识表示方法。深入讨论了知识抽取、存储、问答、推理和融合的关键技术,并介绍了相关评测标准和工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识库系统:CYC Wordnet(组会提过) ConceptNet Freebase DBpedia(RDF三元组)中文Zhishi.me

知识图谱技术体系:

知识表示 RDF和OWL 三元组主谓宾 RDF Graph:有向标记图 SPARQL:RDF的查询语言 JSON-LD 分布式表示:KG Embedding(方法有:张量分解、神经网络NTN、距离模型,便于知识挖掘)

     相关论文:A Three-Way Model for Collective Learning on Multi-Relational Data

知识抽取 NLP+KR 评测:MUC-7、ACE、KBP track 主要方法:知识工程(正则、模板匹配、规则约束)

      基于本体的抽取(知识挖掘、PRA、TransE系列)基于模型的抽取(模型、训练)

知识存储 基于关系数据库和基于原生图的存储 实践中多为混合存储

知识问答 KBQA

知识推理 基于已知事实推出来 基于描述逻辑的推理、基于统计规则挖掘的推理、基于表示学习的推理

知识融合 工具Dedupe、LIMES 知识众包:schema.ORG

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值